PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyrite framboids in pyritized Radiolarian skeletons (Mid-Cretaceous of the Pieniny Klippen Belt, Western Carpathians, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Well preserved pyritized radiolarian skeletons have been found within the grey-green Mid-Cretaceous (Upper Cenomanian) shales in the Pieniny Klippen Belt (Carpathians, Poland). The skeletons contain numerous pyrite framboids in different positions, in channels and inside the abdomen of cryptothoracic forms, but their genetic context is not known. They were formed as a result of the reaction between dissolved iron and sulphide originated from the bacterial sulphate reduction. Two sources of organic matter, "post mortem" in situ decaying organic matter of radiolaria and disseminated organic matter from the surrounding sediment could be available for this process. Pyrite found in the radiolarians probably originates from different processes. It is suggested that pyritization of the radiolarian skeletons took place in the water column whereas pyrite framboids in the skeleton's free spaces could have been formed later during the diagenesis of the sediment. However, their simultaneous formation in the water column or in the sediment cannot be excluded.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
  • 1. Bąk, M., 1995. Mid-Cretaceous Radiolaria from the Pieniny Klippen Belt, Carpathians, Poland. Cretaceous Research, 16: 1-23.
  • 2. Bąk, M., 1996. Abdomen wall structure of Holocryptocanium barbui (Radiolaria). Journal of Micropalaeontology, 15: 131-134.
  • 3. Bąk, M. & Sawłowicz, Z., 2000. Pyritized radiolarians from the Mid-Cretaceous deposits of the Pieniny Klippen Belt - a model of pyritization in an anoxic environment. Geologica Carpathica, 51: 91-99.
  • 4. Benning, L. G., Wilkin, R. T. & Komhauser, K. O., 1999. Sulphate- reducing bacteria and mackinawite stability. In: Ninth Annual VM Goldschmidt Conference, LPI Contributions No. 971, Houston, p. 26.
  • 5. Berner, R. A., 1980. Early diagenesis: a theoretical approach. Princeton University Press, 241 pp.
  • 6. Berner, R. A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48: 605-615.
  • 7. Boesen, R. A. & Postma, D., 1988. Pyrite formation in anoxic sediments of the Baltic. American Journal of Science, 288: 575- 603.
  • 8. Briggs, D. E. G., Bottrell, S. H. & Raiswell, R., 1991. Pyritization of soft-bodied fossils: Beecher’s Trilobite Bed, Upper Ordovician, New York State. Geology, 19: 1221-1224.
  • 9. Canfield, D. E., 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta, 51: 645-659.
  • 10. Canfield, D. E. & Raiswell, R., 1991. Pyrite formation and fossil preservation. In: Allison, P. A. & Briggs, D. E. G. (eds), Taphonomy: Releasing the Data Locked in the Fossil Record. Topics Geobiology, 9: 337-387.
  • 11. Farrand, M., 1970. Framboidal sulphides precipitated synthetically. Mineralium Deposita, 5: 237-247
  • 12. Fisher, I. S. J. & Hudson, J. D., 1985. Pyrite geochemistry and fossil preservation in shales. In: Whittington, H. B. & Morris, S. C., (eds), Extraordinary Fossil Biotas: Their Ecological and Evolutionary Significance. Philosophical Transactions: Royal Society of London, B, 311: 167-169.
  • 13. Fortin, D., Ferris, F. G. & Beveridge, T. J., 1997. Surface-mediated mineral development by bacteria. Reviews in Mineralogy, 35: 161-180.
  • 14. Graham, U. M. & Ohmoto, H., 1994. Experimental study of formation mechanisms of hydrothermal pyrite. Geochimica et Cosmochimica Acta, 58: 2187-2202.
  • 15. Kalliokoski, J. & Cathles, L., 1969. Morphology, mode of formation, and diagenetic changes in framboids. Bulletin of Geological Society of Finland, 41: 125-133.
  • 16. Kohn, M. J. Riciputi, L. R., Stakes, D. & Orange, D. L., 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? American Mineralogist, 83: 1454-1468.
  • 17. Křibek, B., 1975. The origin of framboidal pyrite as a surface effect of sulphur grains. Mineralium Deposita, 10: 389-396.
  • 18. LaBerge, G. L., 1967. Microfossils and Precambrian iron-formations. Geological Society of America, Bulletin, 78: 331-342.
  • 19. Locquin, M. V. & Weber, C., 1978. Origine et structure des membranes organiques cellulaires des moněres archéo-paléozoiques. CR 103 Congress Natur ales Societě Savantes Nancy 1978 (Sect Sci), 2: 27-28.
  • 20. Lougheed, M. S &, Mancuso, J. J., 1973. Hematite framboids in the Negaunee Iron Formation, Michigan: evidence for their biogenic origin. Economical Geology, 68: 202-209.
  • 21. Love, L. G., 1957. Microorganisms and the presence of syngenetic pyrite. Quarterly Journal of Geological Society of London, 113:429-440.
  • 22. Lyons, T. W., 1997. Sulfur isotopic trends and pathways of iron sulphide formation in upper Holocene sediments of the anoxic Black Sea. Geochimica et Cosmochimica Acta, 61: 367-382.
  • 23. Martill, D. M. & Unwin D. M., 1997. Small spheres in fossil bones: Blood corpuscles or diagenetic products? Palaeontology, 40: 619-624.
  • 24. Muramoto, J. A., Honjo, S., Fry, B., Hay, B. J., Howarth, R. W. & Cisne, J. L., 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes. Deep-Sea Research, 38: SI 151-SI 187.
  • 25. Neves, R. & Sullivan, H. J., 1964. Modification of fossil spore exines associated with the presence of pyrite crystals. Micropaleontology, 10: 443^152.
  • 26. Raiswell, R., 1997. A geochemical framework for the application of stable sulfur isotopes to fossil pyritization. Journal of the Geological Society of London, 154: 343-356.
  • 27. Rickard, D. T., Schoonen, N. A. A. & Luther, G. W. Ill, 1995. Chemistry of iron sulphides in sedimentary environments. In: Vairavamurthy, M. A. & Schoonen, M. A. A., (eds), Geochemical transformations of sedimentary sulfur. American Chemical Society Symposium Series, 612: 168-193.
  • 28. Sawłowicz, Z., 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau, 82: 148-156.
  • 29. Sawłowicz, Z., 2000. Framboids - from their origin to application. Mineralogical Transactions, 88: 1-80.
  • 30. Schneiderhoehn, H., 1923. Chalkographische Untersuchung des Mansfelder Kupferschiefers. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 47: 1-38.
  • 31. Sweeney, R. E., Kaplan I. R., 1973. Pyrite framboid formation: laboratory synthesis and marine sediments. Economical Geology, 68: 618-634.
  • 32. Wilkin, R. T. & Barnes, H. L., 1997a. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61: 323-339.
  • 33. Wilkin, R. T. & Barnes, H. L., 1997b. Pyrite formation in an anoxic estuarine basin. American Journal of Science, 297: 620-650.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS7-0003-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.