PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of hydrous-pyrolysis kinetic parameters for oil generation from Baltic Cambrian and Tremadocian source rocks with Type-II kerogen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining kinetic parameters for oil generation from a source rock by hydrous pyrolysis requires a considerable amount of sample (kilograms) and laboratory time (several weeks). In an effort to circumvent these requirements, hydrous-pyrolysis (HP) kinetic parameters for oil generation from Upper Cambrian and Tremadocian source rocks of the Baltic region are estimated by two methods: (1) organic sulfur content in kerogen and (2) HP experiments conducted at 330 and 355°C for 72 h. Estimates for the Upper Cambrian source rocks based on organic sulfur contents gave activation energies from 47 to 56 kcal/mole and frequency factors from 1.156 ' 1025>/sup> to 1.078 ' 1028 m.y.-1 . Tremadocian source rocks based on organic sulfur content gave estimated activation energies from 60 to 62 kcal/mole and frequency factors from 1.790 ' 1029 to 1.104 ' 1030 m.y.-1 . The estimates for the Tremadocian source rocks were less affected by thermal maturation because their low kerogen S/(S + C) mole fractions (< 0.018) remained essentially constant. Conversely, the higher kerogen S/(S + C) mole fractions (>>gt; 0.018) of the Upper Cambrian source rocks decreased with thermal maturation and resulted in overestimation of the kinetic parameters. The second method was designed to estimate kinetic parameters based on two HP experiments. The assumption that the maximum yield in calculating the rate constant at 330°C (k330°C could be determined by a second hydrous pyrolysis experiment at 355°C for 72 h proved not to be valid. Instead, a previously established relationship between Rock-Eval hydrogen index and maximum HP yield for Type-II kerogen was used to calculate k330°C from oil yields generated by the HP experiment at 330°C for 72 h assuming a first-order reaction. HP kinetic parameters were determined from relationships between k330°C and the HP kinetic parameters previously reported. These estimated HP kinetic parameters were in agreement with those obtained by the first method for immature samples, but underestimated the kinetic parameters for samples at higher thermal maturities. Applying these estimated HP kinetic parameters to geological heating rates of 1 and 10°C/m.y. indicated that the Upper Cambrian source rocks would generate oil notably earlier than the overlying Tremadocian source rocks. This was confirmed in part by available data from two neighboring boreholes in the Polish sector of the Baltic.
Rocznik
Strony
217--226
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, PL-30-059 Kraków, Poland, wieclaw@agh.edu.pl
Bibliografia
  • AMRANI A., LEWAN M. D. and AIZENSHTAT Z. (2005) - Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochim. Cosmochim. Acta, 69: 5317-5331.
  • BEHAR F., LEWAN M. D., LORANT F. and VANDENBROUCKE M. (2003) - Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org. Geochem., 34: 575-600.
  • BHARATI S., LARTER S. and HORSFIELD B. (1992) - The unusual potential of the Cambrian Alum Shale in Scandinavia as determined by quantitative pyrolysis methods. In: Generation, Accumulation and Production of Europe's Hydrocarbons II (ed. A. M. Spencer). Spec. Publ. Eur. Ass. Petrol. Geosc., 2: 103-110. Springer-Verlag Berlin Heidelberg.
  • BHARATI S., PATIENCE R. L., LARTER S. R., STANDEN G. and POPLETT I. J. F. (1995) - Elucidation of the Alum Shale kerogen structure using a multidisciplinary approach. Org. Geochem., 23: 1043-1058.
  • BRANGULIS A. P., KANEV S. V., MARGULIS A. S. and HASETON T. M. (1992) - Hydrocarbon geology of the Baltic republics and the adjacent Baltic Sea. In: Generation, Accumulation and Production of Europe's Hydrocarbons II (ed. A. M. Spencer). Spec. Publ. Eur. Ass. Petrol. Geosc., 2: 111-115. Springer-Verlag Berlin Heidelberg.
  • BUCHARDT B., CLAUSEN J. and THOMSEN E. (1986) - Carbon isotope composition of Lower Paleozoic kerogen: effects of maturation. Org. Geochem., 10: 127-134.
  • BUCHARDT B. and LEWAN M. D. (1990) - Reflectance of vitrinitelike macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, southern Scandinavia. Am. Ass. Petrol. Geol. Bull., 74: 394-406.
  • BURNHAM A. K. (1998) - Comment on "Experiments on the role of water in petroleum formation". Geochim. Cosmochim. Acta, 62: 2207-2210.
  • BURNHAM A. K. and BRAUN R. L. (1999) - Global kinetics analysis of complex materials. Energy and Fuels, 13: 1-22.
  • CURTIS J. B., KOTARBAM. J., LEWAN M. D. and WIĘCŁAW D. (2004) - Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: insights from hydrous pyrolysis experiments. Org. Geochem., 35: 1573-1596.
  • ESPITALIÉ J., DEROO G. and MARQUIS F. (1985) - La pyrolyse Rock Eval et ses applications. Revue Inst. Fran. Petrol., 40: 755-784.
  • GRETENER P. E. and CURTIS C. D. (1982) - Role of temperature and time on organic metamorphism. Am. Ass. Petrol. Geol. Bull., 66: 1124-1129.
  • GROTEK I. (2006) - Thermal maturity of organic matter from the sedimentary cover deposits from Pomeranian part of the TESZ, Baltic Basin and adjacent area (in Polish with English summary). Pr. Państw. Inst. Geol., 186: 253-270.
  • HIGLEY D. K., LEWAN M. D., ROBERTS L. N. R. and HENRY M. (2009) Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling. Am. Ass. Petrol. Geol. Bull., 93: 203-230.
  • HUNT J. M. (1996) - Petroleum geochemistry and geology. W. H. Freeman and Company, New York.
  • IDIZ E. F., TANNENBAUM E. and KAPLAN I. R. (1990) - Pyrolysis of high-sulfur Monterey kerogens. In: Geochemistry of Sulfur in Fossil Fuels (eds. W. L. Orr and C. M. White). Am. Chem. Soc. Symp. Ser., 429: 575-591. Washington, DC.
  • JOHANNES I., KRUUSEMENT K. and VESKI R. (2007) - Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrol., 79: 183-190.
  • KARNKOWSKI P. H. (2003) - Modelling of hydrocarbon generating conditions within Lower Palaeozoic strata in the western part of the Baltic Basin (in Polish with English summary). Prz. Geol., 51 (9): 756-763.
  • KOSAKOWSKI P., WRÓBEL M. and POPRAWA P. (2010) - Hydrocarbon generation and expulsion modelling of the lower Paleozoic source rocks in the Polish part of the Baltic region. Geol. Quart., 54 (2): 241-256.
  • KOTARBAM. J., CURTIS J. B. and LEWAN M. D. (2009) - Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians. Org. Geochem., 40: 769-783.
  • KOTARBA M. J., KOSAKOWSKI P., WRÓBEL M. and WIĘCŁAW D.(2010) - Petroleum system and hydrocarbon exploration potential of the Lower Paleozoic strata of the Polish Baltic region. Marine and Petrol. Geol., 29 (in press).
  • LEVENTHAL J. S. (1991) - Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States. Mineralium Deposita, 26: 104-112.
  • LEWAN M. D. (1985) - Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philos. Trans. R. Soc., London, Ser. A., 315: 123-134.
  • LEWAN M. D. (1993a) - Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: Organic Geochemistry (eds. M. Engel and S. Macko): 419-442. Plenum Publ. Corp. New York.
  • LEWAN M. D. (1993b) - Identifying and understanding suppressed vitrinite reflectance through hydrous pyrolysis. The Society for Organic Petrology, Abstracts and Program, 3: 1-3.
  • LEWAN M. D. (1998a) - Reply to the comment by A. K. Burnham on "Experiments on the role of water in petroleum formation". Geochim. Cosmochim. Acta, 62: 2211-2216.
  • LEWAN M. D. (1998b) - Sulfurradical control on petroleum formation rates. Nature, 391: 164-166.
  • LEWAN M. D. (2002) - New insights on timing of oil and gas generation in the central Gulf Coast interior zone based on Hydrous-Pyrolysis kinetic Parameters. Gulf Coast Ass. Geol. Soc. Transactions, 52: 607-620.
  • LEWAN M. D. and BUCHARDT B. (1989) - Irradiation of organic matter by uranium decay in the Alum Shale, Sweden. Geochim. Cosmochim. Acta, 53: 1307-1322.
  • LEWAN M. D., KOTARBA M. J., CURTIS J. B., WIĘCŁAW D. and KOSAKOWSKI P. (2006) - Oil generation kinetics for organic facies with Type-II and -IIS kerogen in the Menilite Shales of the Polish Carpathians. Geochim. Cosmochim. Acta, 70: 3351-3368.
  • LEWAN M. D. and RUBLE T. E. (2002) - Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem., 33: 1457-1475.
  • MODLIŃSKI Z. and PODHALAŃSKA T. (2010) - Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geol. Quart., 54 (2): 109-121.
  • NELSON B. C., EGLINTON T. I., SEEWALD J. S., VAIRAVAMURTHY M. A. and MIKNIS F. P. (1995) - Transformations in organic sulfur speciation during maturation of Monterey Shale: Constraints from laboratory experiments. In: Geochemical Transformations of Sedimentary Sulfur (eds. M. A. Vairavamurthy and M. A. A. Schoonen). Am. Chem. Soc. Symp. Ser., 612: 138-166. Washington, DC.
  • ORRW. L. (1986) - Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Org. Geochem., 10: 499-516.
  • ORR W. L. and SINNINGHE DAMSTÉ J. S. (1990) - Geochemistry of sulfur in petroleum systems. In: Geochemistry of Sulfur in Fossil Fuels (eds. W. L. Orr and C. M. White). Am. Chem. Soc. Symp. Ser., 429: 2-29. Washington, DC.
  • PITMAN J. K., STEINSHOUER D. and LEWAN M. D. (2004) - Petroleum generation and migration in the Mesopotamian Basin and Zagros fold belt of Iraq: results from a basin modelling study. GeoArabia, 9: 41-72.
  • POKORSKI J. (2010) - Geological section through the lower Paleozoic strata of the Polish part of the Baltic region. Geol. Quart., 54 (2): 123-130.
  • POPRAWA P., KOSAKOWSKI P. and WRÓBEL M. (2010) - Burial and thermal history of the Polish part of the Baltic region. Geol. Quart., 54 (2): 131-142.
  • ROBERTS L. N. R., LEWAN M. D. and FINN T. M. (2004) - Timing of oil and gas generation of petroleum systems in the Southwestern Wyoming Province. Mountain Geologist, 41: 87-118.
  • RUBLE T. E., LEWAN M. D. and PHILP R. P. (2001) - New insights on the Green River petroleum system in the Uinta basin from hydrous pyrolysis experiments. Am. Ass. Petrol. Geol. Bull., 85: 1333-1372.
  • SCHLEICHER M., KÖSTER J., KULKE H. and WEIL W. (1998) - Reservoir and source-rock characterisation of the Early Palaeozoic interval in the Peribaltic Syneclise, northern Poland. J. Petrol. Geol., 21: 33-56.
  • TAYLOR G. H., TEICHMÜLLER M., DAVIS A., DIESSEL C. F. K., LITTKE R. and ROBERT P. (1998) - Organic Petrology. Gebrüder Borntraeger, Berlin-Stuttgart.
  • ULMISHEK G. (1990) - Geologic evolution and petroleum resources of the Baltic Basin. In: Interior Cratonic Basins. (eds. M. W. Leighton, D. R. Kolata, D. F. Oltz and J. J. Eidel). Am. Ass. Petrol. Geol. Mem., 51: 603-632.
  • WRÓBEL M. And KOSAKOWSKI P. (2010)-2-Dmodelling of petroleum processes of the lower Paleozoic strata in the Polish part of the Baltic region. Geol. Quart., 54 (2): 257-266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS7-0002-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.