PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental changes around the Cenomanian-Turonian boundary in a marginal part of the Outer Carpathian Basin expressed by microfacies, microfossils and chemical records in the Skole Nappe (Poland)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmiany w głębokowodnym środowisku brzeżnej części basenu Karpat Zewnętrznych wokół granicy Cenomanu i Turonu wyrażone w zapisie mikrofacji, zespołach mikroskamieniałości i chemizmie utworów w Płaszczowinie Skolskiej
Języki publikacji
EN
Abstrakty
EN
Lithology, microfacies, benthic foraminiferal and bulk chemical analyses of the Spława section in the Skole Nappe, Outer Carpathians (Poland) reflect environmental changes across the Cenomanian-Turonian transi- tion. Biogenic-rich-turbidite sedimentation preceded the organic-rich sedimentation in the Skole Basin, termina- ting in the latest Cenomanian in response to progressive eustatic sea-level rise and to expansion of an oxygen minimum zone. The uppermost Cenomanian black, laminated, organic-rich shale series records the oceanic anoxic event (OAE-2). The benthos-free black non-calcareous shales exhibiting positive excursions of chemical redox indexes are indicative of bottom-water anoxia, interrupted by periods of suboxic conditions with sedimentation of hemipelagic green shales with poor agglutinated foraminiferal assemblages. An extremely low sedimentation rate or even a hiatus and an increase in deep-water circulation causing basin oxygenation resulted in precipitation of a ferromanganese layers and siliceous-manganiferrous variegated shales, as documented by low values of chemical redox indices. However, the lack of benthos and bioturbation, and low values of the Ce/La ratio in the subsequent succession of variegated shales (dominated by green shales) indicate a return to stressed conditions at basin floor with sluggish bottom water circulation, which occasionally resulted in sea floor anoxia with deposition of organic-rich shales. The long-termed well-oxygenated conditions at the basin floor appeared in the Early Turo- nian, as documented by diversified benthic foraminiferal assemblages. The frequency of radiolarian-rich layers and Ba/Al and Ba/Sc ratios increase up-section, reflecting an increase in primary productivity, induced by upwelling circulation.
Rocznik
Strony
39--67
Opis fizyczny
bibliogr. 98 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geography, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland, sgbak@cyf-kr.edu.pl
Bibliografia
  • 1.Amorosi, A., 1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology, 109: 135-153.
  • 2.Arthur, M. A., 1979. North Atlantic Cretaceous black shales: The record at Site 398 and brief comparison with other occurrences. In: Sibuet, J. C., Ryan, W. B. F. (eds), Initial of the Deep Sea Drilling Program, 47, pp. 719-752.
  • 3.Arthur, M. A. & Premoli Silva, I., 1982. Development of wide-spread organic carbon-rich strata in the Mediterranean Tethys. In: Schlanger, S. O., Cita, M. B. (eds), Nature and Orgin of Cretaceous Carbon-Rich Facies, Academic Press, London, pp. 7-54.
  • 4.Bąk, K., 2000. Biostratigraphy of deep-water agglutinated Fora-minifera in Scaglia Rossa-type deposits of the Pieniny Klippen Belt, Carpathians, Poland. In: Hart, M. B., Kaminski, M. A. & Smart, C. (eds), Proceedings of the Fifth International Workshop on Agglutinated Foraminifera, Plymouth, Eng-land, September 12-19, 1997, Grzybowski Found. Special Publication, 7, pp. 15-41.
  • 5.Bąk, K., 2006. Sedimentological, geochemical and microfaunal responses to environmental changes around the Cenomanian-Turonian boundary in the Outer Carpathian Basin; a record from the Subsilesian Nappe, Poland. Palaeogeography, Palaeoecology, Palaeoclimatology, 237: 335-358.
  • 6.Bąk, K., 2007a. Deep-water facies succession around the Cenomanian-Turonian boundary in the Outer Carpathian Basin: high-resolution sedimentary, biotic and chemical records in the Silesian Nappe, Poland. Submitted to Palaeogeography, Palaeoecology, Palaeoclimatology. Doi: 101016/j.palaeo. 2006.12.005.
  • 7.Bąk, K., 2007b. Organic-rich and manganese sedimentation during the Cenomanian-Turonian boundary event in the Outer Carpathian Basin; a new record from the Skole Nappe, Poland, and a review from other tectonic units. Submitted to Palaeogeography, Palaeoecology, Palaeoclimatology.
  • 8.Bąk, K., Bąk, M. & Paul, Z., 2001. Barnasiówka Radiolarian Shale Formation - a new lithostratigraphic unit in the Upper Cenomanian - lowermost Turonian of the Polish Outer Carpathians (Silesian Series). Annales Societatis Geologorum Poloniae, 71:75-103.
  • 9.Bąk, K., Bąk, M. & Gaździcka, E., 2005. High resolution radiolarian, foraminiferal and calcareous nannoplankton biostratigraphy of the Upper Cenomanian-Lower Turonian deep-water sediments in the Polish Outer Carpathians. In: Godet, A., Mort, H., Linder, P. & Bodin, S. (eds), 7th International Symposium on the Cretaceous, 5-9 Sept. 2005, Neuchatel, Scientific Program and Abstracts, p. 43.
  • 10.Bąk, M., 2000. Radiolaria from the Upper Cenomanian-Lower Turonian deposits of the Silesian Unit (Polish Flysch Carpathians). Geologica Carpathica, 51: 309-324.
  • 11.Bąk, M., 2004. Radiolarian biostratigraphy of the Upper Cenomanian-Lower Turonian deposits in the Subsilesian Nappe (Outer Western Carpathians). Geologica Carpathica, 55: 239-250.
  • 12.Bąk, M., Bąk, K. & Ciurej, A., 2005. Mid-Cretaceous spiculerich turbidites in the Silesian Nappe of the Polish Outer Carpathians: radiolarian and foraminiferal biostratigraphy. Geological Quarterly, 49: 275-290.
  • 13.Bengston, P., 1996. The Turonian stage and substage boundaries. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 66: 69-79.
  • 14.Bralower, T. J. & Thierstein, H. R., 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, 12:614-618.
  • 15.Burtanówna, J., 1933. Der geologische Bau der Umgegend von Myślenice westlisch vom Raba-Fluss. Annales de la Société Géologique de Pologne, 9: 279-293.
  • 16.Caron, M., Dall'Agnollo, S., Accarie, H., Barrera, E., Kauffman, E. G., Amédro, F. & Robaszynski, F., 2006. High resolution stratigraphy of the Cenomanian-Turonian boundary interval at Pueblo (USA) and Wadi Bahlul (Tunisia): stable isotope and bioevents correlation. Geobios, 39: 171-200.
  • 17.Chow, N., Morad, S. & Al-Aasm, I. S., 2000. Origin of authigenic Mn-Fe carbonates and porewater evolution in marine sediments; evidence from Cenozoic strata ofthe Arctic Ocean and Norwegian-Greenland Sea (ODP Leg 151). Journal of Sedimentary Research, 70: 682-699.
  • 18.Dehairs, F., Chesselet, R. & Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planetary Science Letters, 49: 528-550.
  • 19.De Lange, G. J., Catalano, G., Klinkhammer, G. P. & Luther III G. W., 1990. The interface between oxic seawater and the anoxic Banock brine; its sharpness and the cosequences for the redox-related cycling of manganese and barium. Marine Chemistry, 31: 205-217.
  • 20.De Lange, G. J., Van Os, B., Pruysers, P. A., Middelbourg, J. J., Castradori, D., Van Santvoort, P., Muller, P. J., Eggenkamp, H. & Prahl, F. G., 1994. Possible early diagenetic alteration of palaeo proxies. In: Zahn, M. A. et al. (eds), Carbon Cycling in the Glacial Ocean: Constraints on the Oceans 's Role in Global Change, NATO ASI Series 1, 17, pp. 225-258.
  • 21.Dickens, G. R. & Owen, R. M., 1996. Sediment geochemical evidence for an early-middle Gilbert (early Pliocene) productivity peak in the North Pacific Red Clay Province. Marine Micropaleontology, 27: 107-120.
  • 22.Dymond, J., Suess, E. & Lyle, M., 1992. Barium in deep-sea sediment: a proxy for paleoproductivity. Paleoceanography, 7: 163-181.
  • 23.Erba, 2004. Calcareous nannofossils and Mesozoic oceanic events. Marine Micropaleontology, 52: 85-106.
  • 24.Farmer, J. G. & Lovell, M. A., 1986. Natural enrichment of arsenic in Loch Lomond sediments. Geochimica et Cosmochimica Acta, 50: 2059-2067.
  • 25.Ferguson, J. F. & Gavis, J., 1972. A review of the arsenic cycle in natural waters. Water Resources, 6: 1259-1274.
  • 26.Francesconi, K. A. & Edmonds, J. S., 1998. Arsenic species in marine samples. Croatica Chemica Acta, 71: 342-359.
  • 27.Gawor-Biedowa, E., 1972. The Albian, Cenomanian and Turonian foraminifers of Poland and their stratigraphic importance. Acta Paleontologica Polonica, 17: 3-165.
  • 28.Glasby, G. P., Stüben, D., Jeschke, G., Stoffers, P. & Garbe-Schönberg, C.-D., 1997. A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot. Geochimica et Cosmochimica Acta, 61: 4583-4597.
  • 29.Golonka, J., Oszczypko, N. & Ślączka, A., 2000. Late Carboniferous-Neogene geodynamic evolution and palaeogeography of the circum-Carpathian region and adjacent areas. Annales Societatis Geologorum Poloniae, 70: 107-136.
  • 30.Golonka, J. & Krobicki, M., 2001. Upwelling regime in the Carpathian Tethys: a Jurassic - Cretaceous palaeogeographic and palaeoclimatic perspective. Geological Quarterly, 45: 15-32.
  • 31.Gradstein, F. M., Ogg, J. G., Smith, A. G. et al., 2004. A Geologic Time Scale 2004. Cambridge University Press.
  • 32.Gräfe, K.-U., 2005. Late Cretaceous benthic foraminifers from Basque-Cantabrian Basin, Northern Spain. Iberian Geology, 31:277-298.
  • 33.Gucik, S., 1987. Explanations to the Detailed Geological Map of Poland, scale 1:50,000; Krzywcza (1026) Sheet. [In Polish]. Wydawnictwa Geologiczne, Warszawa.
  • 34.Gucik, S., Jankowski, L., Rączkowski, W. & Żytko, K., 1991. Explanations to the Detailed Geological Map of Poland, scale 1:50,000; Rybotycze (1043) and Dobromil (1044) Sheets. [In Polish]. Wydawnictwa Geologiczne, Warszawa.
  • 35.Gucwa, I., 1966. Results of geochemical examinations of radiolarian shales from Niedźwiada, near Ropczyce. [In Polish, English summary]. Kwartalnik Geologiczny, 10: 1047-1059.
  • 36.Gustafsson, M., Holbourn, A. & Kuhnt, W., 2003. Changes in Northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: the Goban Spur stable isotope record. Palaeogeography, Palaeoecology, Palaeoclimatology, 201: 51-66.
  • 37.Hart, M. B. & Swiecicki, A., 1988. The genus Gavelinella Brotzen, 1942, in the Cretaceous strata of the U.K. Revue Paléobiology, Vol. Spéc., 2: 289-294.
  • 38.Hatch, J. R. & Leventhal, J. S., 1992. Relationship between in-ferred redox potential of the depositional environment and geochemistry of the Upper Pensylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, KS, U.S.A. Chemical Geology, 99: 65-82.
  • 39.Heller, I,1975. Microbiostratigraphy of the Cretaceous deposits in the southern part of the Łódź Synklinorium (Central Poland). Annales Societatis Geologorum Poloniae, 55: 233-254.
  • 40.Herbin, J. P., Montadert, L., Muller, C., Gomez, R., Thurow, J. & Wiedmann, J., 1986. Organic-rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In: Summerhayes, C. P. & Shackleton, N. J. (eds), North Atlantic Palaeoceanography, Geological Society, London, Special Publication, 21, pp. 389-422.
  • 41.Herbin, J. P., Moullade, M., Brumsack, H.-J., Masure, E., Taugourdeau-Lantz, J. & Dunham, K., 1988. The Cenomanian/Turonian Boundary Event at Hole 641 A, ODP Leg 103 (compared with the CTBE Intreval at Site 398). In: Boillot, G., Witerer, E.L. et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 103, pp. 587-634.
  • 42.Hradecka, L., 1993. Gavelinella Brotzen, 1942 and Lingulo-gavelinella Malapris, 1969 (Foraminifera) from the Bohemian Basin. Sbornik Geologickych Ved, Paleontologia, Praha, 33: 79-96.
  • 43.Hradecka, L. & Švábenick´, L., 1995. Foraminifera and calcareous nannoplankton assemblages from the Cenomanian -Turonian boundary interval of the Knoviz section, Bohemian Cretaceous Basin. Geologica Carpathica, 46: 267-276.
  • 44.Jacquin, T. & Graciansky, P. C. de, 1998. Major transgressive/re-gressive cycles: the stratigraphic signature of European Basin development. In: Graciansky, P. C. de et al. (eds), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication, Tulsa, 60, pp. 15-29.
  • 45.Jenkyns, H. C., 1980. Cretaceous anoxic events: from continents to oceans. Journal of Geological Society, London, 137: 171-188.
  • 46.Jones, B. & Manning, D. A. C., 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
  • 47.Kasten, S., Glasby, G. P., Schulz, H. D., Friedrich, G. & Andreev, S. I., 1998. Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow. Marine Geology, 146: 33-52.
  • 48.Keller, G., Berener, Z., Adatte, T. & Stueben, D., 2004. Cenomanian-Turonian and 8 C, and d18 O, sea level and sa-linity variations at Pueblo, Colorado. Palaeogeography, Palaeoecology, Palaeoclimatology, 211: 19-43.
  • 49.Keninson Falkner, K., Klinkhammer, G. P., Bowers, T. S., Todd, J. F., Lewis, B. L., Landing, W. M. & Edmond, J. M., 1993.
  • 50.The behavior of barium in anoxic marine waters. Geochimica et Cosmochimica Acta, 57: 537-554.
  • 51.Koszarski, L. & Morgiel, J., 1963. Initial research on the Cretaceous biostratigraphy in the Skole Unit near Tarnów. [In Polish]. Kwartalnik Geologiczny, 7: 555-557.
  • 52.Koszarski, L. & Ślączka, A., 1973. Outer (flysch) Carpathians: Lower Cretaceous. In: Pożaryski, W. (ed.), Geology of Poland, Wydawnictwa Geologiczne, Warszawa, pp. 492-495.
  • 53.Kotlarczyk, J., 1978. Stratigraphy of the Ropianka Formation or of Inoceramian Beds in the Skole Unit of the Flysch Carpathians. [In Polish, English summary]. Prace Geologiczne PAN- Oddział w Krakowie, 108: 1-82.
  • 54.Książkiewicz, M. (ed.), 1962. Geological Atlas of Poland; Stratigraphic and facial problems, vol. 13. Cretaceous and Older Paleogene in the Polish Outer Carpathians. Instytut Geologiczny, Wydawnictwa Geologiczne, Warszawa, 20 maps, 20 pp. explanatory notes.
  • 55.Kuhnt, W. & Kaminski, M. A., 1989. Upper Cretaceous deep-water agglutinated benthic foraminiferal assemblages from the Western Mediterranean and adjacent areas. In: Wiedmann, J. (ed.), Cretaceous of the Western Tethys. Proceedings of 3rd International Cretaceous Symposium, Stuttgart (Schweizer-bart),pp. 93-120.
  • 56.Kuhnt, W., Herbin, J. P., Thurow, J. & Wiedmann, J., 1990. Distri-bution of Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. In: Huc, A.Y. (ed.), Deposition of organic facies. American Association of Petroleum Geologists Bulletin, 30: 133-160.
  • 57.Kuhnt, W., Geroch, S., Kaminski, M. A., Moullade, M. & Neagu, T., 1992. Upper Cretaceous aby ssal claystones in the North Atlantic and Western Tethys: current status of biostratigra-phical correlation using agglutinated foraminifers and palaeoceanographic events. Cretaceous Research, 13: 467-478.
  • 58.Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J. & Wagner, T., 2005. Orbital-scale record ofthe late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). International Journal of Earth Sciences, 94: 147-159.
  • 59.Kumar, N., Anderson, R. F. & Biscayae, P. E., 1996. Remineralization of particulate authigenic trace metals in the Middle Atlantic Bight: Implications for proxies of export productivity. Geochimica et Cosmochimica Acta, 60: 3383-3397.
  • 60.Kunzendorf, H., Glasby, G. P., Stoffers, P. & Pluger, W. L., 1993. The distribution of rare elements and minor elements in manganese nodules, micronodules and sediments along an east-west transect in the southern Pacific. Lithos, 30, 45-56.
  • 61.Leckie, R. M., Bralower, T. J. & Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tec-tonic forcing during mid-Cretaceous. Paleoceanography, 17: 1041 (10.1029/2001PA000623).
  • 62.Luciani, V. & Cobianchi, M., 1999. The Bonarelli Level and other black shales in the Cenomanian-Turonian of the northeastern Dolomites (Italy): calcareous nannofossil and foraminiferal data. Cretaceous Research, 20: 135-167.
  • 63.Lüning, S., Kolonic, S., Belhadj, E. M., Belhadj, Z., Cota, L., Bariæ, G. & Wagner, T., 2004. Integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa. Earth Sciences Review, 64: 51-117.
  • 64.Machhlour, L., Philip, J. & Oudin, J. L., 1994. Formation of laminate deposits in anaerobic - dysaerobic marine environments. Marine Geology, 117: 287-302.
  • 65.Masuzawa, T., 1989. Compositional change of settling particles with water depth in the Japan Sea. Marine Chemistry, 27: 61-78.
  • 66.McManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., Kumar, N., Burdige, D. J., Hammond, D. E., Brumsack, H. J., McCorkle, D. C. & Rushdi, A., 1998. Geochemistry of barium in marine sediments: Implications for its use as apaleoproxy. Geochimica et Cosmochimica Acta, 62: 3453-3473.
  • 67.McManus, J., Berelson, W. M., Hammond, D. E. & Klinkhammer, G. P., 1999. Barium cycling in the north Pacific: Implications for the utility of Ba as a paleoproductivity and a paleoalkalinity proxy. Paleoceanography, 14: 53-61.
  • 68.McRae, S. G., 1972. Glauconite. Earth Science Review, 8: 397-440.
  • 69.Minami, H. & Kato, Y., 1997. Remobilization of arsenic in sub-oxic sediments from the seafloor of the continental margin. Journal of Oceanography, 53: 553-562.
  • 70.Norris, R. D., Wilson, P. A., 1998. Low latitude sea-surface tem-peratures for the mid-Cretaceous and the evolution of planktonic foraminifera: comment and reply. Geology, 27: 858.
  • 71.Oszczypko, N., 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny, 52: 780-791.
  • 72.Paul, C. R. C., Lamolda, M. A., Mitchel S. F., Vaziri, M. R., Gorostidi, A. & Marshall, J. D., 1999. The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeography, Palaeoecology, Palaeoclimatology, 150: 83-121.
  • 73.Pedersen, T. F. & Calvert, S. E., 1990. Anoxia vs. productivity: what controls the formation of organic carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists, Bulletin, 74: 454-466.
  • 74.Peryt, D. 1983. Mid-Cretaceous microbiostratigraphy and foraminifers of the NE margins of the Świętokrzyskie (Holy Cross) Mts., Poland. Acta Paleontologica Polonica, 28: 417- 466.
  • 75.Peryt, D. & Wyrwicka, K., 1991. The Cenomanian-Turonian oceanic anoxic event in SE Poland. Cretaceous Research, 12: 65-80.
  • 76.Peryt, D. & Wyrwicka, K., 1993. The Cenomanian/Turonian boundary event in Central Poland. Palaeogeography, Palaeoecology, Palaeoclimatology, 104: 185-197.
  • 77.Poprawa, D. & Nemèok, J. (eds), 1998. Geological Atlas of the Outer Carpathians and Their Foreland 1:500,000. Państwowy Instytut Geologiczny, Warszawa.
  • 78.Pratt, L. M. & Threlkeld, C. N., 1984. Stratigraphic significance of C/ C ratios in mid-Cretaceous rocks of theWestern Interior, USA. In: Stott, D. F. & Glass, D. J. (eds), The Mesozoic of Middle North America. Canadian Society Petroleum Geological Memoirs, 9, pp. 305-312.
  • 79.Rantisch, G., Melcher, F., Meisel, T. & Rainer, T., 2003. Rare elements, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits. Mineralogy and Petrology,77: 109-127.
  • 80.Reitz, A., Pfeifer, K., de Lange, G. J. & Klump, J., 2004. Biogenic barium and the detrital Ba/Al ratio: a comparison of their direct and indirect determination. Marine Geology, 204: 289-300.
  • 81.Sageman, B. B., Meyers, S. R. & Arthur, M. A., 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology. 34: 125-128.
  • 82.Schenau, S. J., Prins, M. A., De Lange, G. J. & Monnin, C., 2001. Barium accumulation in the Arabian Sea: controls on barite preservation in marine sediments. Geochimica et Cosmochimica Acta, 65: 1545-1556.
  • 83.Schlanger, S. O., Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events, causes and consequences. Geologie et Mijnbow, 55: 179-184.
  • 84.Schroeder, J. O., Murray, R. W., Leinen, M., Pflaum, R. C. & Janecek, T. R., 1997. Barium in equatorial Pacific carbonate sediment: Terrigenous, oxide, and biogenic associations. Paleoceanography, 12:125-146.
  • 85.Scopelliti, G., Bellanca, A., Coccioni, R., Luciani, V., Neria, R., Baudin, F., Chiari, M. & Marcucci, M., 2004. High-resolution geochemical and biotic records of the Tethyan 'Bonarelli Level' (OAE2, latest Cenomanian) from the Calabianca-Guidaloca composite section, northwestern Sicily, Italy. Palaeogeography, Palaeoecology, Palaeoclimatology, 208: 293-317.
  • 86.Sinninghe Damsté, J. A. & Köster, J., 1998. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planetary Science Letters, 158: 165-173.
  • 87.Sujkowski, Z., 1932. Radiolarites des Karpates Polonaises Orientales et leur comparaison avec les Radiolarites de la Tatra. Étude lithologique. [In Polish, French summary]. Bulletine Service Geologique Pologne (Varsovie), 7: 97-168.
  • 88.Summerhayes, C. P., 1981. Organic facies of Middle Cretaceous black shales in deep North Atlantic. American Association of Petroleum Geologist, Bulletin, 65: 2364-2380.
  • 89.Ślączka, A. & Kaminski, M. A., 1998. Guidebook to Excursions in the Polish Flysch Carpathians. Grzybowski Found. Special Publication, 6, 171 pp.
  • 90.Tribovillard, N.-P., Caulet, J.-P., Vergnaud-Grazzini, C., Moureau, N. & Tremblay, P., 1996. Lack of organic matter accumulation on the upwelling-influenced Somalia margin in a glacial-interglacial transition. Marine Geology, 133: 157- 182.
  • 91.Tsikos, H, Jenkyns, H. C., Walsworth-Bell, B. & Petrizzo, M. R., 2004. Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. Journal of Geological Society, London, 161: 711-719.
  • 92.Tyson, R. V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London, 615 pp.
  • 93.Van Os, B. J. H., Middelburg, J. J. & de Lange, G. J., 1991. Possible diagenetic mobilization of barium in sapropelic sediments from the eastern Mediterranean. Marine Geology, 100: 125-136.
  • 94.Von Breymann, M. T., Emeis, K. C. & Camerlenghi, A., 1990. Geochemistry of sediments from the Peru upwelling area: Results from sites 680, 682, 685, and 688. Proceedings of the Ocean DrillingProgram, Scientific Results, 112: 491-503.
  • 95.Voigt, S., Wilmsen, M., Mortimore, R. N. & Voigt, T., 2003. Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evalua-tion of Cretaceous palaeotemperature proxies. International Journal of Earth Sciences, 92: 285-299.
  • 96.Wehausen, R. & Brumsack, H.-J., 1998. The formation of Pliocene Mediterranean sapropels: constraints from high-resolution major and minor element studies. In: Robertson, A. H. F., Emeis, K.-C., Richter, C. et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 160, College Station, TX,pp. 207-217.
  • 97.Warning, B. & Brumsack, H.-J., 2000. Trace metal signatures of Mediterranean sapropels. Palaeogeography, Palaeoecology, Palaeoclimatology, 158: 293-309.
  • 98.Wójcik-Tabol, P., 2006. Organic carbon accumulation events in the mid-Cretaceous rocks of the Pieniny Klippen Belt (Polish Carpathians) - a petrological and geochemical approach. Geological Quarterly, 50: 419-436.
  • 99.Zhurakovsky, A. G., 1968. Certain new data on the Cretaceous deposits of the Striy river bassins. [In Russian, English summary]. Geologichznyj Sbornik (Lvov) 11: 36-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS7-0001-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.