PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Source Rock Prediction Value: world provinces during Late Jurassic–earliest Cretaceous times and position of West Carpathians in SRPV prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thirty-six Late Jurassic–Early Cretaceous regions were evaluated to obtain the Source Rocks Predic- tion Value (SRPV). We focused on three major processes, which control the organic richness in a specific paleogeographic, climatic and tectonic setting. These three processes are biologic productivity, background sedimentation rates with non-dilution of organic richness by clastic sedimentation, and preservation of organic matter. A high or increased level of primary biologic productivity supports an increased flux of organic carbon to the sediments of the sea floor. When sedimentation rate increases, especially of fine-grained sediment, the organic matter content of the sediment also increases. Preservation of organic matter depends on domination of anoxic conditions during periods of stagnation of Carpathian basins. The debate over which of the three primary pro- cesses is the most important control on the accumulation of organic-rich facies is inconclusive. We assume that the three processes are equally important, and that the balance between them has the overriding control. The amount and richness of organic matter buried in marine sediments then depends on the balance between production and destruction, where the latter includes consumption, decomposition, and dilution. The modeling of the Source Rocks Prediction Value has placed the marginal Tethyan Ocean (Carpathian basin) among the basins, which contain the richest Late Jurassic–Early Cretaceous source rocks in the world. Using the semi-quantitative Delphi method for 36 Late Jurassic regions, which represents a single tectono-depositional province in this time, we evaluated the assessment of SRPV for each of these. The south-Caspian and Central Asia basin was ranked eighth, while the Carpathian basin ninth. The paleogeographic and paleoclimatic settings are indicated as main factors in distribution by basins of known organic-rich rocks. The high organic productivity of the Carpathian basins was caused by upwelling, as well as restricted conditions in the narrow rift basins. The Upper Jurassic organic-rich Mikulov marls representing world-class source rocks (in the southeastern Czech Republic and north-eastern Austria) and Upper Jurassic–lowermost Cretaceous Vendryně Formation rocks were used as local example in analysis of oil source deposits within West Carpathian arc. The average measured Source Potential Index (SPI) for both investigated Upper Jurassic organic rich formations is around 10 and this value fits very well the SPI pre- dicted for Carpathian Upper Jurassic using Source Rocks Prediction Value method.
Słowa kluczowe
Rocznik
Strony
195--211
Opis fizyczny
bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
  • AGH University of Science and Technology, Department of General Geology, Environmental Protection and Geotourism, Al. Mickiewicza 30, 30-063 Kraków; Poland, jan_golonka@yahoo.com
Bibliografia
  • Abed, A. M., Sadaqah, R. & Al-Jazi, M., 2007. Sequence stratigra-phy and evolution of Eshidiyya phosphorite platform, southern Jordan. Sedimentary Geology, 198: 209-219.
  • Adámek, J., 2005. The Jurassic floor of the Bohemian Massif in Moravia - geology and paleogeography. Bulletin of Geosc-ences, 80, 4: 291-305.
  • Algeo, T. J., Lyons, T. W., Blakey, R. C. & Over, D. J., 2007. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC rela-tionships. Palaeogeography, Palaeoclimatology, Palaeoecology, 256: 204-230.
  • Bakan, G. & Büyükgüngör, H., 2000. The Black Sea. Marine Pollution Bulletin, 41: 1-6, 24-43.
  • Banerjee, A., Pahari, S., Jha, M., Sinha, A.K., Jain, A.K., Kumar, N., Thomas, N.J., Misra, K.N. & Chandra, K. 2002. The effective source rocks in the Cambay basin, India. American Association of Petroleum Geologists Bulletin, 86: 433-456.
  • Brooks, J. & Fleet, A. J., (eds), 1987. Marine Petroleum System. Geological Society Special Publication, 26, Blackwell Scientific Publications, Oxford, 444 pp.
  • Brüchert, V., Pérez, M. E. & Lange, C. B., 2000. Coupled primary production, benthic foraminiferal assemblage, and sulfur diagenesis in organic-rich sediments of the Benguela upwelling system. Marine Geology, 163: 27-40.
  • Cornford, C., 1979. Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP site 397, Eastern North Atlantic. In: Von Rad, A. & Ryan, W.B.F. (eds), Report DSP, XLVIIPart I: 503-510.
  • Cramer, B. D. & Saltzman, M. R., 2007. Fluctuations in epeiric sea carbonate production during Silurian positive carbon isotope excursions: A review of proposed paleoceanographic models. Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 37-45.
  • De Wever, P. & Baudin, F., 1996. Palaeogeography of radiolarite and organic-rich deposits in Mesozoic Tethys. Geologische Rundschau, 85: 310-326.
  • Demaison, G. J. & Huizinga, B. J., 1991. Genetic Classification of Petroleum Systems. American Association of Petroleum Geologists Bulletin, 75: 1626-1643.
  • Demaison, G.J. & Moore, G.T. 1980. Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64: 1179-1209.
  • Evans, R. & Kirklund, D. W., 1988. Evaporitic environments as a source of petroleum. In: Schreiber, B.C. (ed.), Evaporites and Hydrocarbons, Columbia University Press, New York: 256-299.
  • Gnanadesikan, A., Slater, R. D., Gruber, N. & Sarmiento, J. L., 2002. Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Research II,49: 363-401.
  • Golonka, J., 2007. Phanerozoic Paleoenvironment and Paleolithofacies Maps. Mesozoic. Kwartalnik AGH. Geologia, 33(2): 211-264.
  • Golonka, J. & Krobicki, M., 2001 Upwelling regime in the Carpathian Tethys: A Jurassic-Cretaceous palaeogeographic and paleoclimatic perspective. Geological Quarterly, 45: 15-32.
  • Golonka, J. & Kiessling, W., 2002. Phanerozoic time scale and definition of time slices, In: Kiessling, W., Flügel, E. & Golonka, J. (eds), Phanerozoic Reef Patterns. SEPM Special Publication, 72: 11-20.
  • Golonka, J. & Picha, F., (eds), 2006. The Carpathians and their foreland: Geology and hydrocarbon resources. American Association of Petroleum Geologists Memoir, 84: 1-600.
  • Golonka, J., Bocharova, N. Y., Edrich, M. E, Kiessling, W., Krobicki, M., Pauken, R. & Wildhaber, W., 2001. Source rock prediction value: Małopolska Oil Province versus world provinces in the Late Jurassic-Early Cretaceous [Przewidywana wartość skał macierzystych: Małopolska Prowincja Naftowa na tle prowincji swiatowych w późnej jurze-wczesnej kredzie] (in Polish, English abstract). Przegląd Geologiczny, 49 (5): 408-411.
  • Golonka, J., Bocharova, N. Y., Edrich, M. E, Kiessling, W., Krobicki, M., Pauken, R. & Wildharber, W., 2004. Source Rock Prediction: Carpathian-Central Asia Case Study. AAPG 2004 Annual Convention Abstract, Volume P: A52-A53.
  • Golonka, J., Aleksandrowski, P., Aubrecht, M., Chowaniec, J, Chrustek, M., Cieszkowski, M., Florek, R., Gawęda, A., Jarosiński, M., Kępińska, B., Krobicki, M., Lefeld, J., Lewan-dowski, M., Marko, F., Michalik, M., Oszczypko, N., Picha, F., Potfaj, M., Słaby, E., Ślączka, A., Stefaniuk, M., Uchman, A. & Żelaźniewicz, A., 2005. Orava Deep Drilling Project and the Post Paleogene tectonics of the Carpathians. Annales Societatis Geologorum Poloniae, 75: 211-248.
  • Golonka, J. Gahagan, L., Krobicki, M., Marko, F., Oszczypko, N. & Slączka, A., 2006. Plate Tectonic Evolution and Paleogeography of the Circum-Carpathian Region. In: Golonka, J. & Picha, F. (eds) The Carpathians and their foreland: Geology and hydrocarbon resources: American Association of Petroleum Geologist, Memoir, 84: 11-46.
  • Golonka, J., Krobicki, M., Waśkowska-Oliwa, A., Słomka T., Skupien P, VaśićekZ., Cieszkowski M. & Ślączka A., 2008a. Lithostratigraphy of the Upper Jurassic and Lower Cretaceous deposits of the western part of Outer Carpathians (discussion proposition). In: Krobicki, M. (ed.), Utwory przełomu jury i kredy w zachodnich Karpatach fliszowych polsko-czeskiego pogranicza. Kwartalnik AGH, Geologia, 34(3/1): 9-31.
  • Golonka, J., Krobicki, M., Waśkowska-Oliwa, A., Vasićek Z. & Skupien P, 2008b. Main paleogeographical elements of the West Outer Carpathians during Late Jurassic and Early Cretaceous times. In: Krobicki, M. (ed.), Utwory przełomu jury i kredy w zachodnich Karpatach fliszowych polsko-czeskiego pogranicza. Kwartalnik AGH, Geologia, 34(3/1): 61-72.
  • Golonka, J., Matyasik, I., Skupien, P., Więcław, D., Waśkowska-Oliwa, A., Krobicki, M., Strzeboński, P. &VaśićekZ., 2008c. Upper Jurassic - Lower Cretaceous source rocks in the western part of the Flysch Carpathians. In: Krobicki, M. (ed.), Utwory przełomu jury i kredy w zachodnich Karpatach fliszowych polsko-czeskiego pogranicza. Kwartalnik AGH. Geologia. 34(3/1): 73-81.
  • Handoh, I. C., Bigg, G. R. & Jones, E. J. W., 2003. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 202: 31-58.
  • Huc, A. Y., 1995 (ed.): Paleogeography, Paleoclimate, and Source Rocks. American Association of Petroleum Geologists Studies in Geology, 40: 1-347.
  • Huc, A. Y., Van Buchem, F. S. P. & Colletta, B., 2005. Strati-graphic control on source rock distribution: first and second order scale. In: Harris, N. B., (ed.), The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms and Consequences. SEPM Special Publication, 82: 225-242.
  • Jannasch, H. W. & Wirsen, C. O., 1977. Microbial Life in the Deep Sea, Scientific American, 236: 42-52.
  • Jones, E. J. W., Bigg, G. R., Handoh, I. C. & Spathopoulos, F., 2007. Distribution of deep-sea black shales of Cretaceous age in the eastern Equatorial Atlantic from seismic profiling. Paleogeography, Paleoclimatology, Palaeoecology, 248: 233-246.
  • Jørgensen, B. B., Weber, A. & Zopfi, J., 2001. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research I, 48, 2097-2120.
  • Klemme, H. D., 1994. Petroleum Systems of the World Involving Upper Jurassic Source Rocks. In: Magoon L. B. & Dow, W. G. (eds), The Petroleum System - From Source To Trap. American Association of Petroleum Geologists Memoir, 60: 51-72.
  • Klemme, H. D. & Ulmishek, G. F., 1991. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. American Association of Petroleum Geologists Bulletin, 75, 12: 1809-1851.
  • Kotarba, M. J. & Koltun, Y. V., 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian Parts of the Carpathian Province. In: Golonka, J. & Picha, F. J. (eds), The Carpathians and their foreland: geology and hydrocarbon resources. American Association of Petroleum Geologists Memoir, 84: 395-442.
  • Rrejći, O., Francu, J, Poelchau, H.S, Müller, P. & Stráník, Z. 1996. Tectonic evolution and oil and gas generation at the border of the North European Platform.In: Wessely, G. & Liebl, W. (eds), Oil and Gas in Alpine Thrustbelts and Basins of Central and Eastern Europe. EAGE Special Publication, 5: 177-186.
  • Krijgsman, W., 2002. The Mediterranean: Mare Nostrum of Earth sciences. Earth andPlanetary Science Letters, 205: 1-12.
  • Krüger, M., Treude, T., Wolters, H., Nauhaus, K. & Boetius, A., 2005. Microbial methane turnover in different marine habitats. Paleogeography, Palaeoclimatology, Palaeoecology, 227: 6-17.
  • Ladwein, H. W., 1988. Organic geochemistry of Vienna basin: model for hydrocarbon generation in overthrust belts. American Association of Petroleum Geologists Bulletin, 72: 586-599.
  • Lafargue, E., Ellouz, N. & F. Roure, F. 1994. Thrust-controlled exploration plays in the outer Carpathians and their foreland (Poland, Ukraine and Romania). First Break, 12: 69-79.
  • Linstone, H. A. & Turoff, M., 1975. The Delphi Method, Techniques and Applications. Addison-Wesley Publishing Co., Reading, Massachusets, 620 pp.
  • Mccarthy, J. J., Yilmaz, A., Coban-Yildiz, Y. & Nevins, J. L., 2007. Nitrogen cycling in the offshore waters of the Black Sea. Estuarine, Coastal and Shelf Science, 74: 493-514.
  • Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, 5/6: 213-250.
  • Meyers, P. A., 2006. Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales. Paleogeography, Palaeoclimatology, Palaeoecology, 235: 305-320.
  • Özsoy, E. & Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Science Reviews, 42: 231-272.
  • Pedersen, T. F. & Calvert, S.E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks? American Association of Petroleum Geologists Bulletin, 74: 454-466.
  • Picha, F.J. & Peters, K.E., 1998. Biomarker oil-to-source rock correlation in the Western Carpathians and their foreland, Czech Republic. Petroleum Geoscience, 4: 289-302.
  • Piper, D. Z., Perkins, R. B. & Rowe, H. D., 2007. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry. Deep-Sea Research II, 54: 1396-1413.
  • Rais, P., Louis-Schmid, B., Bernasconi, S.M. & Weissert, H., 2007. Palaeoceanographic and palaeoclimatic reorganization around the Middle-Late Jurassic transition. Paleogeography, Palaeoclimatology, Palaeoecology, 251: 527-546.
  • Ritts, B.D, Hanson, A.D., Zinniker, D. & Moldowan, J.M. 1999. Lower-Middle Jurassic Nonmarine Source Rocks and Petroleum Systems of the Northern Qaidam Basin, Northwest China. American Association of Petroleum Geologists Bulletin, 83: 1980-2005.
  • Rogers, A. D., 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II,47: 119-148.
  • Sarg, J. F., 2001. The sequence stratigraphy, sedimentology, and economic importance of evaporate-carbonate transitions: a review. Sedimentary Geology, 140: 9-42.
  • Schoellkopf, N.B. & Patterson, B.A. 2000. Petroleum systems of offshore Cabinda, Angola. American Association of Petroleum Geologists Bulletin, 73: 361-376.
  • Schumacher, S. & Lazarus, D., 2004. Regional differences in pe-lagic productivity in the late Eocene to early Oligocene - a comparison of southern high latitudes and lower latitudes. Paleogeography, Palaeoclimatology, Palaeoecology, 214: 243-263.
  • Sellwood, B. W. & Valdes, P. J., 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190: 269-287.
  • Stein, R., 2007. Upper Cretaceous/lower Tertiary black shales near the North Pole: organic-carbon origin ans source-rock potential. Marine and Petroleum Geology, 24: 67-73.
  • Summerhayes, C. P., Prell, W. L. & Emeis, K. C., 1992. Upwelling Systems: Evolution Since the Early Miocene, Geological Society Special Publication, 64: 1-519.
  • Summerhayes, C. P., Emeis, K. C., Angel, M. V., Smith, R. L. & Zeitzschel, B. (eds), 1995. Upwelling in the ocean, modern processes and ancient records. Dahlem Workshop Report, 422 pp.
  • Szeligiewicz, W., 1999. Vertical mixing influence on the compensation depth. Journal of Marine Systems, 21: 169-177.
  • Ślączka, A., Kruglow, S., Golonka, J. Oszczypko, N. & Popadyuk, I., 2006. The General Geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka, J. & Picha, F. (eds), The Carpathians and their foreland: Geology and hydrocabon resources: American Association of Petroleum Geologist, Memoir, 84: 221-258.
  • Turley, C., 2000. Bacteria in the cold deep-sea benthic boundary layer and sedimentwater interface of the NE Atlantic. FEMS Microbiology Ecology, 33: 89-99.
  • Tyson, R. V., 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. In: Brooks, J. & Fleet, A. J. (eds), Marine Petroleum Source Rocks, Geoogical Society. London Special Publication, 26: 47-67.
  • Tyson, R. V., 2005. Productivity versus preservation controversy: cause, flaws, and resolution. In: Harris, N. B., (ed.), The Deposition of Organic Carbon-Rich Sediments: Models, Mechanism and Consequences. SEPM Special Publication, 82: 17-34.
  • Tyson, R. V. & Pearson, T. H., 1991. Modern and ancient conti-nental shelf anoxia: an overview. In: Tyson, R. V. & Pearson, T. H., (eds.): Modern and Ancient Continental Shelf Anoxia, Geological Society Special Publication, 58: 1-24.
  • Vandenbroucke, M. & Largeau, C., 2007. Kerogen origin, evolution and structure. Organic Geochemistry, 38: 719-833.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS7-0001-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.