PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The relationship of brine chemistry of the Pennsylvanian Paradox Evaporite Basin (southwestern USA) to secular variation in seawater chemistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To establish the brine chemistry associated with the evaporites in the Pennsylvanian Paradox Basin of southeastern Utah and southwestern Colorado (USA), the composition of primary fluid inclusions was determined for sedimentary halite from two drill cores, one near the central part of the basin (Shafer Dome No. 1) and one from a more marginal location of the basin (Gibson Dome No. 1). Chemical analysis of halite fluid inclusions was done on six samples from three different evaporite cycles of the Paradox Formation; cycle 10 in the Shafer Dome core and cycles 6 and 18 from the Gibson Dome core. The inclusions that range in size from 2 to 80 microns across, were analyzed using the Petrychenko method. Large inclusions (40 to 80 microns across) that were used for the chemical analyses contain one fluid phase with a carnallite or sylvite daughter crystal. Also reported in this study are fluid inclusion homogenization temperatures for sylvite or carnallite from primary halite crystals in the Gibson Dome core and in Shafer Dome. The relationship between K+ and Mg2+ in chloride rich inclusions corresponds to their proportion in MgSO4-depleted marine waters concentrated to the stage of carnallite deposition. A correlative relationship was observed between K+2+4-rich to MgSO4-poor compositions that have been proposed by other workers. A transition from MgSO4-rich to MgSO4-poor seawater composition may have occurred between Pennsylvanian and Permian times. This paper presents a possible alternate explanation to those already proposed in the literature, that the Paradox Formation mineralogy resulted from an intermediate seawater composition that records the global transition from MgSO4-rich to MgSO4-poor seawater.
Rocznik
Strony
25--40
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geology and Geochemistry of Combus tible Minerals, National Academy of Sciences of Ukraine, Naukova 3A, 79060 Lviv, Ukraine
Bibliografia
  • 1.BORCHERT H. and MUIR R. O. (1964) - Salt deposits: the origin, metamorphism and deformation of evaporites. Van Nostrand.
  • 2.CENDÓN D. I., AYORA C. and PUEYO J. J. (1998) - The origin of barren bodies in the Subiza potash deposit, Navarra, Spain: implications for sylvite formation. J. Sediment. Res., 68: 43-52.
  • 3.CRAIG H. (1961) - Isotopic variations in natural waters. Science, 133: 1702-1703.
  • 4.D'ANS J. (1915) - Untersuchungen über die Saltzsysteme ozeanischer Salzablagerungen. Kali, 9: 48.
  • 5.DAVIS D. W., LOWENSTEIN T. K. and SPENCER R. J. (1990) - Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and NaCl-CaCl2-H2O. Geochim. Cosmochim. Acta, 54: 591-601.
  • 6.FANLO I. and AYORAC. (1998) - The evolution of the Lorraine evaporite basin. Implications for the chemical and isotope composition of the Triassic ocean. Chem. Geol., 146: 135-154.
  • 7.FRIEDMAN I., REDFIELD A. C., SCHOEN B. and HARRIS J. (1964) -The variation of the deuterium content of natural waters in the hydrologic cycle. Rev. Geoph., 2: 177-224.
  • 8.GALAMAY A. R., BUKOWSKIK. and PRZYBYŁO J. (1997) -Chemical composition and origin of brines in the Badenian evaporite basin of the Carpathian Foredeep: fluid inclusion data from Wieliczka (Poland). Slovak Geol. Mag., 3: 165-171.
  • 9.GARCÍA-VEIGAS J., ROSELL L. and GARLICKI A. (1997) - Petrology and geochemistry (fluid inclusions) of Miocene halite rock salts (Badenian, Poland). Slovak Geol. Mag., 3: 181-186.
  • 10.GOLDHAMMER R. K., OSWALD E. J. and DUNN P. A. (1994) -High-frequency, glacioeustatic cyclicity in the Middle Pennsylvanian of the Paradox Basin: an evaluation of Milankovitch forcing. IAS Spec. Publ., 19:243-283.
  • 11.HARDIE L. A. (1984) - Evaporites, marine or non-marine? Am. J. Sc., 284: 193-240.
  • 12.HARDIE L. A. (1996)-Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24: 279-283.
  • 13.HARDIE L. A., SMOOT J. P. and EUGSTER H. P. (1981) - Saline lakes and their deposits: a sedimentological approach. IAS Spec. Publ., 2: 7-41.
  • 14.HITE R. J. (1961)- Potash-bearing evaporite cycles in the salt anticlines of the Paradox Basin, Colorado and Utah. U.S. Geol. Surv., Prof. Paper, 424-D: 135-138.
  • 15.HITE R. J. (1970) - Shelf carbonate sedimentation controlled by salinity in the Paradox Basin, southeast Utah. In: Third International Symposium on Salt. Northern Ohio Geol. Soc., Cleveland: 48-66.
  • 16.HITE R. J. (1983) - The sulfate problem in marine evaporites. Sixth International Symposium on Salt, I: 217-230. The Salt Inst.
  • 17.HITE R. J. (1985) - Preliminary mineralogical and geochemical data from the D.O.E. Gibson Dome corehole no. 1, San Juan County, Utah. U.S. Geol. Surv. Open-File Report, 83-780.
  • 18.HITE R. J. and BUCKNER D. H. (1981) - Stratigrahic correlations, facies concepts, and cyclicity in Pennsylvanian rocks of the Paradox Basin. In: Rocky Mountain Association of Geologists, 1981 Field Conference (techn. coord. D. L. Wiegland): 147-159.
  • 19.HOLLAND H. D. (1984) - The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, New Jork.
  • 20.HORITA J., ZIMMERMANN H. and HOLLAND H. D. (2002) - Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochem. Acta, 66: 3733-3756.
  • 21.JOHNSON S. Y., CHAN M. A. and KONOPKA E. A. (1991) - Pennsylvanian and Early Permian paleogeography of the Uinta-Piceance Basin Region, northwest Colorado and Northeast Utah. U.S. Geol. Surv. Bull., 1787-CC: 1-35.
  • 22.KENDALL A. C. (1988) - Aspects of evaporite basin stratigraphy. In: Evaporites and Hydrocarbons (ed. B. C. Schreiber): 11-65. Columbia University Press, New York.
  • 23.KENDALL A. C. (2011) - Marine evaporites. Geol. Ass. Canada, GeoText, 6: 503-537.
  • 24.KHAMSKIY E. V. (1967) - Kristallizatsiya iz rastvorov. Nauka, Leningrad.
  • 25.KOVALEVICH V. M. (1988) - Phanerozoic evolution of ocean water composition. Geochem. Intern., 25: 20-27.
  • 26.KOVALEVYCH V. and VOVNYUK S. (2010) - Fluid inclusions in halite from marine salt deposits: are they real microdroplets of ancient seawater? Geol. Quart., 54 (4): 401-412.
  • 27.KOVALEVICH V. M., PERYT T. M. and PETRICHENKO O. I. (1998) -Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. J. Geol., 106: 695-712.
  • 28.KOVALEVYCH V., PERYT T. M., BEER W., GELUK M. and HALAS S. (2002a) - Geochemistry of Early Triassic seawater as indicated by study of the Roet halite in the Netherlands, Germany and Poland. Chem. Geol., 182: 549-563.
  • 29.KOVALEVYCH V. M., PERYT T. M., CARMONA V., SYDOR D. V., VOVNYUK S. V. and HALAS S. (2002b) - Evolution of Permian seawater: evidence from fluid inclusions in halite. Neues Jahrb. Geol. Paläont. Abh., 178 (1): 27-62.
  • 30.KYSER T. K. (1987) - Equilibrium fractionation factors for stable isotopes. Miner. Ass. Canada, 13: 1-84.
  • 31.LAZAR B. and HOLLAND H. (1988) - The analysis of fluid inclusions in halite. Geochim. Cosmochim. Acta, 52: 485-490.
  • 32.LOWENSTEIN T. K. (1982) - Primary features in a potash evaporite deposit, the Permian Salado Formation of west Texas and New Mexico. SEPM Core Workshop, 3: 276-304.
  • 33.LOWENSTEIN T. K. and SPENCER R. J. (1990) - Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. Am. J. Sc.,290: 1-42.
  • 34.LOWENSTEIN T. K., TIMOFEEFF M. N., BRENNAN S. T., HARDIE L. A. and DEMICCO R. V. (2001) - Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294: 1086-1088.
  • 35.PETERSON J. A. and HITE R. J. (1969) - Pennsylvanian evaporite-carbonate cycles and their relation to petroleum occurrence, Southern Rocky Mountains. Am. Ass. Petrol. Geol. Bull., 53: 884-908.
  • 36.PETRICHENKO O. I. (1979) - Methods of study of inclusions on minerals of saline deposits. In: Fluid Inclusion Research Proc. COFFI (ed. E. Roedder), 12: 214-274. University of Michigan Press, Ann Arbor.
  • 37.PETRICHENKO O. I. and WILLIAMS-STROUD S. (1995) - Chemical composition of water in the Late Carboniferous Evaporite Paradox Basin (USA). In: Abstracts, 13th Intern. Congress on Carboniferous-Permian, Polish Geological Institute: 160-161.
  • 38.PETRYCHENKO O. Y. (1973) - Metody doslidzhennya vkluchen u mineralakh galogennykh porid. Naukova Dumka, Kyiv.
  • 39.PETRYCHENKO O. Y. and PERYT T. M. (2004) - Geochemical conditions of deposition in the Upper Devonian Prypiac' and Dnipro-Donets evaporite basins (Belarus and Ukraine). J. Geol., 112: 577-592.
  • 40.PETRYCHENKO O. Y., PERYT T. M. and CHECHEL E. I. (2005) - Early Cambrian seawater chemistry from fluid inclusion in halite from Siberian evaporites. Chem. Geol., 219: 149-161.
  • 41.PETRYCHENKO O., PERYT T. M. and ROULSTON B. (2002) - Seawater composition during deposition of Viséan evaporites in the Moncton Subbasin of New Brunswick as inferred from the fluid inclusion study of halite. Canadian J. Earth Sc., 39: 157-167.
  • 42.RAUP O. B. (1970) - Brine mixing: an additional mechanism for formation of basin evaporites. Am. Ass. Petrol. Geol. Bull., 54: 2246-2259.
  • 43.RAUP O. B. and HITE R. J. (1992) - Lithology of evaporite cycles and cycle boundaries in the upper part of the Paradox Formation of the Hermosa Group of Pennsylvanian Age in the Paradox Basin, Utah and Colorado. U.S. Geol. Surv. Bull., 2000-O: 1-47.
  • 44.RAUP O. B. and HITE R. J. (1996) - Bromine geochemistry of chloride rocks of the Middle Pennsylvanian Paradox Formation of the Hermosa Group, Paradox Basin, Utah and Colorado. U.S. Geol. Surv. Bull., 2000-M: 1-116.
  • 45.ROEDDER E. (1984) - Fluid inclusions. Rev. Miner., 12.
  • 46.SPENCERR. J. and HARDIEL. A. (1990)-Controlof seawatercomposition by mixing of river waters and midocean ridge hydrothermal brines. Geochem. Soc. Spec. Publ., 2: 409-419.
  • 47.TRUDGILL B. D. (2011) - Evolution of salt structures in the northern Paradox Basin: controls on evaporite deposition, salt wall growth and supra-salt stratigraphic architecture basin research. Basin Res., 23: 208-238.
  • 48.VALIASHKO M. G. (1962) - Zakonomernosti formirovaniya mestorozhdeniy soley. Izd. Moscow University, Moskva.
  • 49.WEBER L. J., SARG J. F. and WRIGHT F. M. (1995) - Sequence stratigraphy and reservoir delineation of the Middle Pennsylvanian (Desmoinesian), Paradox Basin and Aneth Field, southwestern USA. SEPM Short Course Notes, 35: 1-81.
  • 50.WENGERD S. A. (1958) - Pennsylvanian stratigraphy, Southwest Shelf, Paradox Basin. In: Guidebook to the Geology of the Paradox Basin (ed. A. F. Sanbom): 109-134. 9th Ann. Field Conf. Intermountain Ass. Petrol. Geol.
  • 51.WILLIAMS-STROUD S. (1994a) - The evolution of inland sea of marine origin at a non-marine saline lake: the Pennsylvanian Paradox Salt. SEPM Spec. Publ., 50: 293-306.
  • 52.WILLIAMS-STROUD S. (1994b) - Solution to the Paradox? results of some chemical equilibrium and mass balance calculations applied to the Paradox Basin evaporite deposit. Am. J. Sc., 294: 1189-1228.
  • 53.ZHARKOV M. A. (1984) - Paleozoic Salt Bearing Formations of the World. Springer, Berlin.
  • 54.ZIMMERMANN H. (2000) - Tertiary seawater chemistry - implications from primary fluid inclusions in marine halite. Am. J. Sc., 300: 723-767.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0035-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.