PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regional landslide susceptibility model using the Monte Carlo approach– the case of Slovenia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the analyses of landslide spatial occurrence, a regional landslide susceptibility model for the area of Slovenia with medium spatial resolution was calculated. Of 3241 landslides with known locations, 67% were selected randomly but representatively as the learning sub-set and used for univariate statistical analyses (c2) to analyse the landslide occurrence in relation to the precondition factors (lithology, slope inclination, slope curvature, slope aspect, distance to geological boundaries, distance to structural elements, distance to surface waters, flow length and land-cover type). In addition, a relation to the triggering factors (maximum 24-hour rainfall intensity with a return period of 100 years, average annual rainfall, and peak ground acceleration with a return period of 475 years) was assessed. The analyses were performed using a geographic information system – GIS in raster format with 25 × 25 m pixel size. The results of the analyses were later used for the development of a weighted linear susceptibility model where more than 156 000 automatically calculated models with random weight combinations were derived. The landslide testing sub-set (33% of landslides) and representative areas with no landslides were used for the validation of all models developed. The results showed that relevant precondition factors for landslide occurrence are (with their weight in a linear model): lithology (0.33), slope inclination (0.23), land-cover type (0.27), slope curvature (0.08), distance to structural elements (0.05), and slope aspect (0.05).
Słowa kluczowe
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.ARSO (2004) - CORINE Land Cover for Slovenia 2000. Environmental Agency of Republic of Slovenia, Ljubljana.
  • 2.ARSO (2005) - Environmental Information and Observation Network -SI. Environmental Agency of Republic of Slovenia, Ljubljana, http://nfp-si.eionet.europa.eu/Dokumenti/GIS/splosno, 2005
  • 3.AYALEW L. and YAMAGISHIH. (2005) - GIS-based landslide susceptibility mapping in Kakuda-Yahiko Mountains, Central Japan. Geomor-phology, 65: 15-31.
  • 4.BAI S., WANG J., LÜ G., ZHOU P., HOU S. and XU S. (2009) -GIS-based and data-driven bivariate landslide-susceptibility mapping in the Three Gorges area, China. Pedosphere, 19 (1): 14-20.
  • 5.BUSER S. (2010) - Geological map of Slovenia at scale 1:250 000. Geol. Surv. Slovenia, Ljubljana.
  • 6.CARRARA A. (1983) - Multivariate models for landslide hazard evaluation. Mathemat. Geol., 15: 403-426.
  • 7.CARRARA A., CARDINALI M., DETTI R., GUZZETTI F., PASQUI V. and REICHENBACH P. (1991) - GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landform., 16: 427-445.
  • 8.CHI K. H., PARK N. W. and CHUNG C. J. (2002) - Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. Proc. ISPRS Technical Commission IV Symposium, 2002 "Geospatial Theory, Processing and Applications", Ottawa.
  • 9.CHUNG C. J. (2006) - Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Computer and Geosc., 32: 1052-1068.
  • 10.CHUNG C. F. and FABBRI A. G. (2001) - Prediction models for landslide hazard using fuzzy set approach. Geomorphology and Environmental Impact Assessment: 31-47. A. A. Balkema, Rotterdam.
  • 11.CHUNG C. F. and FABBRI A. G. (2003) - Validation of spatial prediction models for landslide hazard mapping. Nat. Haz., 30 (3): 451-472.
  • 12.CHUNG C. F. and FABBRI A. G. (2005) - Systematic procedures of landslide hazard mapping for risk assessment using spatial prediction models. In: Landslide Hazard and Risk (eds. T. Glade, M. G. Anderson and M. J. Crozier): 139-174. John Wiley and Sons, Chichester.
  • 13.CLAESSENS L., KNAPEN A., KITUTU M. G., POESEN J. and DECKERS J. A. (2007) - Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology, 90 (1-2): 23-35.
  • 14.CONOSCENTI C., di MAGGIO C. and ROTIGLIANO E. (2008) - GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology, 94: 325-339.
  • 15.COHEN J. (1960)-A coefficient of agreement for nominal scales. Educational and Psychological Measurements, 20 (1): 37-46.
  • 16.CROZIER M. J. and GLADE T. (2005)-Landslide hazard and risk: issues, concepts and approach. In: Landslide Hazard and Risk (eds. T. Glade, M. G. Anderson and M. J. Crozier): 1-40. John Wiley and Sons, Chichester.
  • 17.DAHAL R. K., HASEGAWA S., NONOMURA A., YAMANAKA M., MASUDA T. and NISHINO K. (2008) - GIS-based weights-of-evidence modelling of rainfall - induced landslides in small catchments for landslide susceptibility mapping. Environment. Geol., 54: 311-324.
  • 18.DAVIS J. C. (1986) - Statistics and data analysis in geology. John Wiley and Sons, New York.
  • 19.DAVIS J. C., CHUNG J. F. and OHLMACHER G. C. (2006) - Two models for evaluating landslide hazards. Computer and Geosc., 32: 1120-1127.
  • 20.FABBRI A. G., CHUNG C. F., CENDREO A. and REMONDO J. (2003) -Isprediction of future landslides possible with a GIS? Nat. Haz., 30 (3): 487-499.
  • 21.GORSEVSKI P. V., GESSLER P. E., BOLL J., ELLIOT W. J. and FOLTZ R. B. (2006) - Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology, 80 (3-4): 178-198.
  • 22.GURS (2000) - InSAR DEM 25 (Digital Elevation Model). Survey and Mapping Administration, Ljubljana.
  • 23.GUZZETTI F., REICHENBACH P., CARDINALI M., GALLI M. and ARDIZZONE F. (2005) - Landslide hazard assessment in the Staffora river basin, northern Italian Apennines. Geomorphology, 72: 272-299.
  • 24.GUZZETTI F., REICHENBACH P., ARDIZZONE F., CARDINALI M. and GALLI M. (2006) - Estimating the quality of landslide susceptibility models. Geomorphology, 81: 166-184.
  • 25.HAMMOND C. J., PRELLWITZ R. W. and MILLER S. M. (1992) - Landslide hazard assessment using Monte Carlo Simulation. Proc. 6th Internat. Symposium, Christchurch, New Zealand, 2: 959-964. A. A. Balkema.
  • 26.HAYNE M. C. and GORDON D. (2001) - Regional landslide hazard estimation, a GIS/decision tree analysis: Southeast Queensland, Australia. Proc. 14th Southeast Asian Geotechnical Conf., Hong Kong., A.A. Balkema: 115-122.
  • 27.HERVÁS J., GÜNTHER A., REICHENBACH P., MALET J.-P. and van den EECKHAUT M. (2010) - Harmonised approaches for landslide susceptibility mapping in Europe. Proc. Int. Conference Mountain Risks: Bringing Science to Society, Florence, Italy, 24-26 November, 2010: 501-505. CERG Editions, Strasbourg.
  • 28.JÄGER S. and WIECZOREK F. (1994) - Landslide susceptibility in the Tully Valley area, Finger Lakes region, New York. Open-file Report 94-615, US Geol. Surv., Reston, http://pubs.usgs.gov/of/1994/ofr-94-0615/tvstudy.htm,2005
  • 29.JENKS G. F. (1967) - The data model concept in statistical mapping. International Yearbook of Cartography, 7: 186-190.
  • 30.KAWABATA D. and BANDIBAS J. (2009) - Landslide susceptibility mapping using geological data, a DEM from ASTER images and an ArtiWcial Neural Network (ANN). Geomorphology, 113: 97-109.
  • 31.KOJIMA H., CHUNG C. F and van WESTEN C. J. (2000) - Strategy on the landslide type analysis based on the expert knowledge and the quantitative prediction model. International Archiv. Photogram. Remot. Sensing, 33 (Part-B7): 701-708.
  • 32.KOMAC M. (2005) - Intenzivne padavine kot sprožilni dejavnik pri pojavljanju plazov v Sloveniji.G eologija, 48 (2): 263-279.
  • 33.KOMAC M. (2006) - A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74 (1/4): 17-28.
  • 34.KOMAC M. and RIBIČIČ M. (2006) - Landslide susceptibility model on a national scale - a case of Slovenia. Geologija, 49 (2): 295-309.
  • 35.LAPAJNE J., ŠKET MOTNIKAR B. and ZUPANČIČ P. (2001) - New seismic hazard map - intensity replaced by design ground acceleration. Gradbeni vestnik, 50: 140-149.
  • 36.LEE S. and PRADHAN B. (2006) - Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J. Earth Syst. Sc., 115 (6): 661-672.
  • 37.LINEBACK GRITZNER M., MARCUS W. A., ASPINALL R. and CUSTER S. G. (2000) - Assessing landslide potential using GIS, soil wetness modelling and topographic attributes, Payette River, Idaho. Geomorphology, 37: 149-165.
  • 38.LIU C.-N. (2008) - Landslide hazard mapping using Monte Carlo simulation - a case study in Taiwan. Proc. 2nd Internat. Conference GEDMAR08, Nanjing, China 30 May-2 June, 2008, Part 3: 189-194.
  • 39.LIU C.-N. and WU C.-C. (2008) - Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environment. Geol., 59: 907-915.
  • 40.OAS (1991)- Primer on natural hazard management in integrated regional development planning. Department of Regional Development and Environment Executive Secretariat for Economic and Social Affairs, Organization of American States, Washington.
  • 41.http://www.oas.org/dsd/publications/unit/oea66e/begin.htm#Con-tents, 2005
  • 42.METROPOLIS N. and ULAM S. (1949) - The Monte Carlo method. J. Am. Stat. Ass., 44 (247): 335-341.
  • 43.MOREIRAS S. M. (2005) - Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology, 66: 345-357.
  • 44.PARK C. (1997) - The environment: principles and applications. Routledge, London.
  • 45.REMONDO J., GONZALEZ A., diaz de TERAN J., CENDRERO A., FABBRI A. and CHUNG J. F. (2003) - Validation of landslide susceptibility maps; examples and applications from a case study in northern Spain. Nat. Haz., 30: 437-449.
  • 46.RIBIČIČ M., ŠINIGOJ J. and KOMAC M. (2003) - New general engineering geological map of Slovenia. Geologija, 46 (2): 397-404.
  • 47.RICCHETTI E. (2000) - Multispectral satellite image and ancillary data integration for geological classification. Photogram. Engineering Remote Sensing, 66 (4): 429-435.
  • 48.ROSSI M., GUZZETTI F., REINCHNBACH P., MONDINI A. C. and PERUCCACCI S. (2010) - Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114: 129-142.
  • 49.SOETERS R. and van WESTEN C. J. (1996) - Slope stability: recognition, analysis and zonation. Transportation Research Board - National Research Council, Spec. Rep., 247: 129-177.
  • 50.STANČIČ Z. and VELJANOVSKI T. (1998) - Arheološki napovedovalni modeli in GIS. In: Geografski informacijski sistemi v Sloveniji (ed. M. Krevs): 175-18. ZRC SAZU5, Ljubljana.
  • 51.STANČIČ Z. and VELJANOVSKI T. (2000a) - Understanding Roman settlement patterns through multivariate statistics and predictive modelling. In: Beyond the Map (ed. G. Lock): 147-156. IOS Press.
  • 52.STANČIČ Z. and VELJANOVSKI T. (2000b) - Understanding Roman settlement patterns through multivariate statistics and predictive modelling. In: Geoarchaeology of the Landscapes of Classical Antiquity (F. Vermeulen andM. De Dapper): 179-187. Stichting Babesch.
  • 53.Van den EECKHAUT M., REICHENBACH P., GUZZETTI F., ROSSI M. and POESEN J. (2009) - Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat. Haz. Earth System Sc., 9: 507-521.
  • 54.VOOGD H. (1983) - Multicriteria evaluation for urban and regional planning. Pion Ltd., London.
  • 55.VRIŠER I. (1997) - Metodologija ekonomske geografije: metode, viri in bibliografija na primeru Slovenije. Filozofska fakulteta, Oddelek za geografijo, Univerza v Ljubljani: 25-26.
  • 56.ZHOU G., ESAKI T., MITANI Y., XIE M. and MORI J. (2003) - Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geol., 68 (3-4): 373-386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0035-0098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.