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Based on the analyses of landslide spatial occurrence, a regional landslide susceptibility model for the area of Slovenia with medium spa-
tial resolution was calculated. Of 3241 landslides with known locations, 67% were selected randomly but representatively as the learning
sub-set and used for univariate statistical analyses (x%) to analyse the landslide occurrence in relation to the precondition factors (lithol-
ogy, slope inclination, slope curvature, slope aspect, distance to geological boundaries, distance to structural elements, distance to sur-
face waters, flow length and land-cover type). In addition, a relation to the triggering factors (maximum 24-hour rainfall intensity with a
return period of 100 years, average annual rainfall, and peak ground acceleration with a return period of 475 years) was assessed. The
analyses were performed using a geographic information system — GIS in raster format with 25 x 25 m pixel size. The results of the analy-
ses were later used for the development of a weighted linear susceptibility model where more than 156 000 automatically calculated mod-
els with random weight combinations were derived. The landslide testing sub-set (33% of landslides) and representative areas with no
landslides were used for the validation of all models developed. The results showed that relevant precondition factors for landslide occur-
rence are (with their weight in a linear model): lithology (0.33), slope inclination (0.23), land-cover type (0.27), slope curvature (0.08),
distance to structural elements (0.05), and slope aspect (0.05).
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INTRODUCTION

Landslides, defined as a sudden movement of a mass of soil
and weathered rock mainly driven by gravity (Park, 1997), are
the most common local geohazard problem in Slovenia. An ho-
listic regional landslide protection and prevention approach is
composed of several stages and it starts with defining the land-
slide — susceptible areas. This stage consists of data collection
which is followed by analyses of the available data. Based on
the analytical results and models/maps as their spatial represen-
tation, the legislative part of the process has the responsibility
of defining further steps in the field of protection and preven-
tion measures at a more detailed level. The process does not
stop at this point, since it can be regarded as a live spiral-shaped
continuous process that improves with every repeated “cycle”.
There are numerous approaches to landslide susceptibility
model development at different levels such as Remondo et al.
(2003), Ayalew and Yamagishi (2005), Moreiras (2005),
Guzzetti et al. (2006), Conoscenti et al. (2008), Bai et al.

(2009), Kawabata and Bandibas (2009), van den Eeckhaut et
al. (2009), Hervas et al. (2010) and Rossi et al. (2010).

For the first time in Slovenia a national landslide database,
containing 6602 landslides, was collected within the framework
of the project “Renewal and upgrading of landslide information
system and its inclusion into the GIS_UJME database” (project
CRP V2-0857; Komac and Ribici¢, 2006). The database, in
which roughly half of the landslides (3241) were geographically
located, enabled the spatial and temporal analyses of landslide
occurrence in relation to different factors. The analytical results
represented a solid foundation for the production of a regional
landslide susceptibility map at a scale of 1:250 000 for the area of
Slovenia with the Monte Carlo approach as an upgrade to the ex-
pert-driven approach that was used by Komac and Ribici¢
(2006). Monte Carlo methods are a class of computational algo-
rithms that rely on repeated random sampling to compute their
results (Metropolis and Ulam, 1949). For the purpose of assess-
ing the landslide susceptibility in Slovenia a Monte Carlo
method was used to calculate the most reliable linear weighted
susceptibility model. The Monte Carlo approach was used to



42 Marko Komac

overcome the uncertainties related to the influencing factorsand  scale (while in fact the model covers the whole country). More
uncertainties in the model evaluation process. All analyses were  than 155 800 models were developed for the whole of Slovenia,
conducted in the GIS with ESRI’s ArcGIS™ and ArcView™  that is, for an area of approximately 21 000 km? (Fig. 1).
software on the 25 x 25 m pixel resolution and the results were For the purpose of model development, there were gath-
statistically analysed with univariate methods (3%). Althoughthe  ered spatial factor data that have already been proven to be
majority of landslides in Slovenia are triggered by intensive rain-  relevant to landslide susceptibility by many authors (Carrara,
fall in combination with human activities, the final landslide sus-  1983; Carrara et al., 1991; Kojima et al., 2000; Fabbri et al.,
ceptibility model only indicates or defines areas that are proneto  2003; Crozier and Glade, 2005; Dahal et al., 2008; van den
landslide occurrence and does not try to tackle the triggering rea-  Eeckhaut et al., 2009). The landslide data were obtained from
sons such as rainfall, snow melt, earthquakes or human interac-  the renewed GIS_UJME landslide database. Landslides are
tion. Despite the exclusion of the triggering factors from the sus-  predominantly of smaller size and their area spreads from 68
ceptibility modelling, the impacts of two natural triggering fac-  to 95 300 m? with an average of 6700 m” Due to the reason
tors on landslide occurrence were analysed and thresholds of  that almost half of the landslides in the database were de-
these factors were assessed. scribed only by a point, an approximation was made where a
Landslide susceptibility is a rather simple concept, express-  scar area of each landslide was represented by one pixel (cell
ing the locations where possible new landslide phenomena, de-  of 25 x 25 m), which was consequently included in the analy-
fined by their typological features, are more likely to occur.  sis. The landslide set consisted of 3241 landslides (Fig. 1), of
The temporal occurrence and the “relative hazard” are ne-  which 2/3 (2165) were partitioned randomly for each of the 29
glected (Guzzetti et al., 2005, 2006). lithological units. This learning sub-set was then used for the
landslide susceptibility model training phase, which consisted
of univariate statistical analyses of landslide occurrence
STUDY AREA AND DATA USED within each class of each factor. The remaining 1076 land-
slides or nearly 1/3 of the landslide population — a testing
The goal was to assess the general landslide susceptibility — sub-set —was used for the model evaluation. Where in a spe-
on, according to Soeters and van Westen (1996), the regional  cific lithological unit less than 40 landslides occurred, the
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Fig. 1. Shaded relief of the area of Slovenia with major cities, major rivers and locations of 3241 known landslide occurrences
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landslide occurrence served as an indication, based on which,
the final ranking of a given unit and hence its landslide occur-
rence probability was chosen using an expert decision. This
correction was inevitable due to the fact that the mapping of
landslides did not cover the whole study area (which would be
almost impossible due to its size). In addition 729 control cells
were randomly selected from areas where no landslides
should occur. Together with the landslide testing sub-set it
represented test points (1805 cells) for model evaluation. The
digital elevation model (DEM) data were obtained from the
national 25 m resolution INSAR DEM 25 (GURS, 2000), as
the best available DEM dataset for the whole Slovenian area
that was derived from 26 SAR satellite ERS1 and ERS2 im-
ages. The average DEM error for flat terrains was 1.5 metres
and for mountainous areas 6.5 metres (GURS, 2000), which
influences the quality of the final susceptibility model to a
certain extent, but, due to the general scale of the susceptibil-
ity model and its purpose of overviewing the status of land-
slide susceptibility in Slovenia, do not represent a significant
obstacle in its usage. All the additional data on the terrain
morphology (elevation, slope curvature, slope inclination and
slope aspect) were derived from the DEM. The Geological
Map of Slovenia at the scale of 1:250 000 (Buser, 2010)
served as a source for the geological data and engineering
geological data (Komac, 2005). For the land-cover and the
vegetation cover the CORINE land-cover data were used
(ARSO, 2004). The surface water data were obtained from
ARSO (2005) and are at a scale of 1:25 000. Although the
triggering factors were not included in the susceptibility mod-
elling we assessed them and we included them in the paper for
the purpose of presenting the results of the analyses of their
influence on landslide triggering in Slovenia. The maximum
24-hour rainfall data with a return period of 100 years and the
average annual rainfall data, based on a 30-year observation
period were obtained from interpolated data for the whole of
Slovenia with 100 m pixel resolution (ARSO, 2005). The
peak ground acceleration (PGA) data with a resolution of
0.25 g for a return period of 475 years were obtained from

Lapajne et al., (2001). Table 1 summarises the thematic data
layer information for the study area.

METHODOLOGY

To understand natural processes, the influencing factors on
observed processes have to be defined and their interaction has
to be addressed. The most appropriate way to understand the
“back-stage” of natural processes is to analyse the factors or
their approximations. The better the understanding, the better
the prediction of future events or at least the susceptibility to
them. The analyses, being the first stage in the landslide suscep-
tibility model creation process, were conducted on the landslide
training sub-set for all of the factors for the whole of Slovenia.
Figure 2 represents a diagram of the whole process.

Several authors (Stanci¢ and Veljanovski, 1998, 2000a, b;
Lineback Gritzner et al., 2000; Komac, 2005) showed the ap-
plicability of the x? (Chi-square) method for testing normally
distributed categorical variables. The Chi-square method is
based on the comparison of observed and expected frequencies
of the phenomenon (Davis, 1986). For the purpose of the model
development, the categorical variables were transformed to nu-
merical form on the basis of the relative probability of phenom-
enon occurrence. In short, they were normalised but it has to be
emphasised that such an ordinal scale does not reflect the real
relation between the class probabilities.

Based on the results of the y® univariate analyses, the
classes within each factor were ordered (ranked) according to
the statistical landslide occurrence probability. Where obvi-
ous discrepancies of class ranking occurred, the expert deci-
sion was made to correct the error. Before the inclusion of rel-
evant factors into the model development, the values of each
factor were normalised. It was a necessary step to equalise the
influence of factors and to emphasise the role of weights used
in the models.

Table 1
Thematic data layer information of study area
Thematic layer Factor Scale Data type Description Denotation
Landslide database landslide <50K landslide occurrence LS
g;feg:g\g/iecna}lamap lithology 250K vector, polygon engineering geological units EG
structural elements 250K vector, line distance to structural elements [m] D_EL
geological boundaries 250K vector, line distance to geological boundaries [m] D_GB
slope inclination 25x25m grid slope [°] SLP
INSAR DEM 25 slope curvature 25x25m grid curvature (unit-less) CURV
slope aspect 25x25m grid aspect (azimuth) ASP
vector, polygon, digitized
CORINE 2000 landcover type 30m from Landsat TM landuse type CLC
Water net surface waters 25K vector, line distance to surface water [m] D_WN
r%ﬁ?nrgi_nfglol;y 100 x 100 m grid maximum 24-hour rainfall [mm] 24 _RF
Rainfall ; ]
aver?a} ?ggpgs‘lerrgégfa”' 100 x 100 m grid average annual rainfall [mm] AN_RF
Seismic activity PGA,; return p. 475y 500K vector, polygon peak ground acceleration [g] PGA
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Fig. 2. Diagram of the landslide susceptibility model creation process
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The normalization was done using the equation:

_ OV —min [1]
max— min

NV

where: NV- stands for a new, normalised value; OV — represents the old
(nominal) value; the difference between maximum (max) and minimum
(min) is always one less than the original number of classes; normalized
values ranged from 0 to 1.

The normalized factors were used to develop the optimum
landslide susceptibility model. The models were developed us-
ing the linear weighted sum (VVoogd, 1983). The result is stand-
ardised landslide susceptibility, calculated from the equation:

LSUSC, = Y w, x f, [2]
=1

where: LSUSCp — represents the standardized relative landslide suscepti-
bility (0-1) at a given location; w;— represents the weight for the given fac-
tor; fij — represents a continuous or discrete variable at a given location.

The range of weight values for each factor in the Monte
Carlo calculations was based upon weights calculated by
Komac (2006) and Komac and Ribi¢i¢ (2006). Landslide sus-
ceptibility models for the whole of Slovenia were calculated
using the Monte Carlo approach where the author defined the
upper and lower value and the weight step, with which the
weight values were selected between the minimum and maxi-
mum value, for each of the factors (Table 2). Weights of factors
are listed in Table 2, in the column “Factor” beneath the fac-
tor’s name. Wy, represents the minimum and Wy, the maxi-
mum weight values used in the random combinations calcula-
tion and “Step” represents the step.

The Monte Carlo approach in the field of landslide suscepti-
bility was previously used for safety factor assessment on a small
area (Hammond et al., 1992; Zhou et al., 2003; Gorsevski et al.,
2006; Liu, 2008; Liu and Wu, 2008), while this landslide sus-
ceptibility assessment is focused on regional landslide suscepti-
bility assessment and is rather simple. By randomly selecting
weight values for factors used in the linear weighted susceptibil-
ity model calculation, numerous different combinations of

weights were used to produce a unique model each time, which
was tested for the accuracy of landslide susceptibility prediction.
Based on this approach, 156 169 models with random weight
combinations (within defined ranges) were calculated. All mod-
els were tested on the landslide test sub-set (1076 landslides —
LO) and on the test areas where no landslides should occur (729
cells— NoLO). In the following text both test sets are regarded as
1805 test points. In order to select the optimum model, a compar-
ison of models was necessary. The comparison was based on the
equal area criterion to avoid differences between the models’
landslide susceptibility value distributions. Put simply, each of
the susceptibility classes is supported by the same statistical reli-
ability and hence robustness of the approach is achieved. Each of
the models evaluated was classified into 100 classes, according
to landslide susceptibility, meaning that the research area was
split into 100 classes with one class covering 1% of the area. The
class with the highest landslide susceptibility score, calculated
from (1), was ranked as 100 and the class with the lowest land-
slide susceptibility score was ranked as 1. The prediction rate
curves for some of the models are shown in Figure 3 where the
cumulative proportion of the landslide testing sub-set is pre-
sented on the vertical axis (y), while along the horizontal axis (x)
landslide susceptibility decreases from left to right. At the same
time, the x axis expresses the cumulative proportion of the area.
For each susceptibility class (1% of the study area), the propor-
tion of the landslide testing sub-set was compared with the ran-
dom proportion (if a random prediction model were chosen
where in each class approximately 1% of landslides would oc-
cur) to assess whether the probability of landslide occurrence for
the given class was higher than a random one (LOactuaL
> Oranpow)- For the purpose of the model quality assessment
and model comparison the Cohen kappa (k) index was used (Co-
hen, 1960):

P, —P: [3]

where: Pc — proportion of correctly classified control points (either LO lo-
cated at a landslide susceptible area or NoLO located at a landslide averse
area); Pe — proportion of hypothetical probability correctly classified con-
trol points.
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Table 2

Relation of each class in a given spatio-temporal factor and landslide occurrence based on Chi-square analyses
and normalized new values for the landslide susceptibility modelling

Class

Rank Normalized

Factor Class  Observed LO Expected LO (O-E)*2/E influence value Description
EG Chi-Sq. = 1822.7 df=5 p <0.000 lithologic description
1 152 394.73 149.26 - 1* 0.00 units on flood plains
Wwin = 0.2 2 307 869.83 364.19 - 2* 0.20 carbonates. resist. igneous r.
Wpwax = 0.6 3 42 43.93 0.08 - 3 0.40 resist. metamorphic r. less resist. ign. r.
Step = 0.02 4 191 129.39 29.34 + 4x* 0.60 carb. with incl. of less resist. r. gravels
less resist. metam. r. resist. clastites. clayey
5 538 413.40 37.55 + 5** 0.80 r. conglom. limestone with marl.
anthropog. sedim.
6 982 072 124221+ 6 100 A e e aitt fract
SLP Chi-Sq. = 853.5 df =15 p <0. 000 Slope []
1 121 600.56 382.9383 - 1 0.00 0-5
Whpin = 0.2 2 146 237.76 354114 2 0.07 5-8
Whiax = 0.6 3 255 234.78 1.7409 + 10 0.60 8-11
Step = 0.02 4 326 213.61 59.1368 + 13 0.80 11-14
5 334 187.72 113.9802 + 15 0.93 14-17
6 295 157.55 119.9079 + 16 1.00 17-20
7 228 130.02 73.8438 + 14 0.87 20-23
8 178 103.72 53.1870 + 12 0.73 23-26
9 99 82.69 3.2166 + 11 0.67 26-29
10 69 66.40 0.1014 + 9 0.53 29-32
11 39 51.78 3.1555 - 3 0.13 32-35
12 25 35.54 3.1282 - 4 0.20 35-38
13 15 20.54 1.4946 - 6 0.33 38-41
14 10 11.72 0.2524 - 7 0.40 41-44
15 7 7.18 0.0046 - 8 0.47 44-47
16 9 14.41 2.0321 - 5 0.27 47-90
CURV Chi-Sq. = 156.7 df =10 p <0.000 Curvature (unit-less)
1 0 0.01 0.01 - 6 0.50 extremely concave (-8 — —4)
Whin= 0.0 2 6 2.87 3.40 + 8 0.70 -4--2
Whax = 0.3 3 74 44.34 19.84 + 10 0.90 -2--1
Step = 0.02 4 231 132.81 72.60 + 11 1.00 -1--05
5 785 690.77 12.86 + 9 0.80 -0.5--0.01
6 327 439.96 29.00 - 1 0.00 flat (-0.01-0.01)
7 556 659.07 16.12 - 2 0.10 0.01-0.5
8 127 134.34 0.40 - 4 0.30 0.5-1
9 49 47.63 0.04 + 7 0.60 1-2
10 1 4.14 2.38 - 3 0.20 2-4
11 0 0.06 0.06 - 5 0.40 extremely convex (4-8)
ASP Chi-Sq. =51.53 df=8 p <0.000 Azimuth
1 1 30.63 28.66 - 1 0.00 Flat
Whwin = 0.0 2 246 269.93 2.12 - 3 0.25 N
Whiax = 0.2 3 254 277.36 1.97 4 0.38 NE
Step = 0.02 4 272 260.13 0.54 + 7 0.75 E
5 271 249.49 1.85 + 8 0.88 SE
6 343 281.66 13.36 + 9 1.00 S
7 290 283.74 0.14 + 6 0.63 SW
8 262 259.64 0.02 + 5 0.50 w
9 217 243.43 2.87 - 2 0.13 NW
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Tab. 2 cont.
Factor Class Observed LO Expected LO (O-E)"2/E in%ljléﬁce Rank N0|\'Ir;1|aulésed Description
CLC Chi-Sq. = 1532.9 df =35 p <0.000 CLC nomenclature
1 1 0.20 3.28 30 0.83 111
Win= 0.0 2 59 44.39 4.81 31 0.86 112
Wiiax = 0.4 3 3 6.98 2.27 - 11 0.29 121
Step = 0.02 4 1 1.92 0.44 - 16 0.43 122
5 0 0.20 0.20 - 20 0.54 123
6 0 0.71 0.71 - 14 0.37 124
7 2 1.25 0.44 + 29 0.80 131
8 0 0.33 0.33 - 17 0.46 132
9 0 0.26 0.26 - 18 0.49 133
10 2 0.29 10.05 32 0.89 141
11 2 1.32 0.35 28 0.77 142
12 5 120.42 110.62 - 1 0.00 211
13 0 0.11 0.11 - 22 0.60 212
14 34 16.74 17.79 + 33 0.91 221
15 3 3.84 0.19 - 21 0.57 222
16 224 124.13 80.34 + 35 0.97 231
17 0 0.20 0.20 - 19 0.51 241
18 439 295.76 69.38 34 0.94 242
19 621 193.46 944.87 36 1.00 243
20 309 470.34 55.34 - 4 0.09 311
21 115 263.24 83.48 - 2 0.03 312
22 310 475.37 57.53 - 3 0.06 313
23 4 22.84 15.54 - 8 0.20 321
24 4 23.42 16.10 - 7 0.17 322
25 0 0.02 0.02 - 26 0.71 323
26 12 46.67 25.76 - 5 0.11 324
27 1 0.69 0.14 + 27 0.74 331
28 0 18.19 18.19 - 6 0.14 332
29 2 11.36 7.72 - 9 0.23 333
30 0 0.04 0.04 - 25 0.69 335
31 0 2.69 2.69 - 10 0.26 411
32 0 0.10 0.10 - 23 0.63 421
33 0 0.56 0.56 - 15 0.40 422
34 2 5.17 1.95 - 12 0.31 511
35 1 2.70 1.07 - 13 0.34 512
36 0 0.09 0.09 - 24 0.66 523
D EL Chi-Sq. = 2360.8 df=6 p <0.000 Distance [m]
1 40 1089.54 1011.01 - 1 0.00 <25
Wiin=0.0 2 803 320.57 726.02 + 7 1.00 25-55
Wiax = 0.2 3 692 355.07 319.71 + 6 0.83 55-148
Step = 0.02 4 518 308.13 142.94 + 4 0.50 148-403
5 97 74.73 6.63 + 3 0.33 403-1097
6 2 7.85 4.36 - 2 0.17 1097-2981
7 4 0.10 150.13 + 5 0.67 >2981
AN_RF Chi-Sq. =736.8 df =13 p <0.000 Amount [mm]
1 5 34.67 25.40 - 5 0.31 <800
2 21 91.73 54.54 - 2 0.08 800- 900
3 110 106.33 0.13 + 9 0.62 900-1000
4 240 157.17 43.65 + 12 0.85 1000-1100
5 264 243.01 1.81 + 10 0.69 1100-1200
6 407 289.53 47.66 + 13 0.92 1200-1300
7 91 189.29 51.04 - 3 0.15 1300-1400
8 83 221.47 86.58 - 1 0.00 1400-1500
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Tab. 2 cont.
Factor ~ Class  Observed LO  Expected LO (O-E)2/E in%llfgrﬁce Rank No:/rglaul‘lesed Description
AN_RF Chi-Sq. =736.8 df =13 p <0.000 Amount [mm]
9 128 220.29 38.66 - 4 0.23 1500-1600
10 296 215.81 29.80 11 0.77 1600-1800
11 343 133.87 326.71 + 14 1.00 1800-2000
12 97 155.87 22.24 - 0.38 2000-2500
13 62 78.38 3.42 - 0.54 2500-3000
14 8 17.57 5.21 - 0.46 >3000
24 _RF Chi-Sq. = 166.6 df=9 p <0.000 Amount [mm]
1 1 31.78 29.81 - 3 0.22 <100
2 500 667.61 42.08 1 0.00 100-150
3 1043 872.04 33.52 + 10 1.00 150-200
4 352 292.86 11.94 + 9 0.89 200-250
5 143 115.59 6.50 + 8 0.78 250-300
6 31 88.77 37.60 - 2 0.11 300-350
7 28 35.56 1.61 - 4 0.33 350-400
8 33 25.36 2.30 7 0.67 400-450
9 16 14.00 0.29 6 0.56 450-500
10 9 12.43 0.95 - 5 0.44 >500
PGA Chi-Sq. = 408.3 df=6 p <0.000 Acceleration [g]
1 251 363.64 34.89 - 2 0.17 0.1
2 269 288.92 1.37 - 4 0.50 0.125
3 477 375.45 27.47 + 5 0.67 0.15
4 270 534.10 130.59 - 1 0.00 0.175
5 584 388.34 98.59 7 1.00 0.2
6 292 165.36 96.99 6 0.83 0.225
7 13 40.21 18.41 - 3 0.33 0.25

In the column “Factor”, beneath the factor’s name, weight values’ span and step for each of the spatio-temporal factors that was used for the automatic ran-
dom weight combinations calculation is represented. * and ** — based upon the engineering-geologist’s expert decision, the ranks of classes 1 and 2 were
switched; the same was done for ranks of classes 4 and 5. Observed LO — number of observed landslides in a given class. Expected LO — number of ex-
pected landslides in a given class corresponds to a real proportion of the same class. (O-E)"2/E — square of the difference between observed and expected
values, divided by the expected value. A sum of these values of all the classes represents a Chi-square test value. Class influence — if characterized by plus
(+) the class stimulates the landslide occurrence. If characterized by minus (=) the given class hinders landslide occurrence. Rank — new values where
classes within a factor are ranked according to their susceptibility to landslide occurrence. Normalized value — calculated value of a class based on its rank
and the number of classes in a factor; values range from 0 to 1. Chi-Sg. — Chi-square, df — degrees of freedom, p — probability of error, Wy, — minimum

weight value, Wyax — maximum weight value

For model quality assessment, a simplified term of suscepti-
bility was used, where half of the landslide susceptible area (cf.,
Rank_LSUSC = 0-50) with a lower landslide susceptibility
score was defined as resistant or averse to landslides, while the
other half of the landslide susceptible area (Rank LSUSC =
51-100) was defined as prone or susceptible to landslides. In its
concept, the described validation procedure for the susceptibility
models is the same as the assessment of the landslide hazard pre-
diction using success rate curves — SRC (Chung and Fabbri,
2001, 2003, 2005; Chi et al., 2002; Fabbri et al., 2003; Remondo
et al., 2003; Chung, 2006; Davis et al., 2006; Guzzetti et al.,
2006; Conoscenti et al., 2008; van den Eeckhaut et al., 2009).

RESULTS AND DISCUSSION
GENERAL RESULTS OF ANALYSES

The summarised results of Chi-square analyses, the influ-
ence of each class on the landslide occurrence, ranked values

for each class within the factor, its normalised value according
to its susceptibility to landslides, and additional description of
classes are shown in Table 2. Results for each factor are given
in the following text.

From the original 29 lithological units, rocks and soils were
classified based on their geomechanical properties (RibiCic et
al., 2003), into six groups of engineering geological units with
different landslide susceptibility. The least susceptible to land-
slide phenomenon were units located on flood plains, but it has
to be stressed at this point that these units were classified into
this group merely due to their location and not due to their
geomechanical properties. A second group consisted of car-
bonates (limestones, dolomites, and rocks consisting of the
two) and resistant igneous rocks (tonalites, dacites and
granodiorites), followed by the third group of resistant meta-
morphic rocks (mica-schists and gneisses), less resistant igne-
ous (intrusive and pyroclastic) rocks. Carbonates with the in-
clusion of less resistant rocks, and gravelly soils located on
slopes (gravels) were classified into the fourth group. The fifth
group (and also the second most susceptible to landslides) was
composed of less resistant metamorphic rocks (amphibolites,
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Fig. 3. Graphical representation the cumulative distribution of landslides (prediction rate curves) in the upper 30%
of the area, according to landslide susceptibility for 6 of 13 models

Line marked as “random prediction” defines the boundary, below which assignation of landslide susceptibility
to pixels is purely coincidental

serpentinites, diaphthorites, metamorphic slates and phillites),
resistant clastites, clayey rocks, conglomerates, limestones
with marls and anthropogenic sediments. The most susceptible
group of lithological units, where soils prevail, was formed by
clayey and marly soils, gravel, less resistant clastites and a
combination of soils of different fractions.

Landslides occur significantly differently than randomly
expected at slope inclinations between 11 and 14°, and be-
tween 23 and 26°, and conditionally between 26 and 29°. The
overall critical slope inclinations for landslide occurrence
range from 11 to 29°.

The concave areas of slopes proved to be critical for land-
slide occurrence. This correlation is most probably related to
colluvial material and pore water concentration (Hayne and
Gordon, 2001; Lee and Pradhan, 2006; Claessens et al., 2007)
that leads to subsequent reduced shear strength of the soil in the
concave areas and eventually to slope failure. The correlation
could also be the result of concave areas (scarp areas) formed
by already triggered landslides.

In terms of slope aspect, the southern slopes are the most
susceptible to mass movements. This could be related to the
greater exposure of the slopes to temperature variations, which
are more marked on southern slopes and govern the rock
weathering processes. In addition the southern slopes are more
suitable for cultivation and are hence subjected to human inter-
action with slope stability.

Landslides occur with significance at distances ranging
from 25 to 1100 metres from larger faults, included in the anal-

yses at a scale of 1:250 000. These distances point to the fact
that smaller fault systems, which were not included in the anal-
yses, tend to have influence on landslide occurrence. Neverthe-
less, smaller fault systems are related to greater systems, result-
ing in the dependence of landslide occurrence upon the dis-
tance to structural elements. Fractured zones, which are always
related to fault systems, are more prone to landslide occurrence
due to the lack of compactness of or disruption in the soil and
bedrock.

Among the CORINE 2000 land-cover types, the following
proved to have influence on landslide occurrence: discontinu-
ous urban fabric (112), vineyards (221), pastures (231), com-
plex cultivation patterns (242), and land principally occupied
by agriculture, with significant areas of natural vegetation
(243). The increased occurrence of landslides in the areas of
discontinuous urban fabric is most probably the consequence
of infrastructure placement over landslide — susceptible areas.
Vineyards are always located on southern slopes, where the
natural vegetation was replaced by cultivated plants with rela-
tively poor root systems. The shallow root system of pastures
that lie on the steeper slopes, ranging from 21 to 33° (VriSer,
1997), does not provide effective protection against mass
movement. The negative influence is increased by pasturing.
The prevention of landslide occurrence is not of great impor-
tance in areas of land principally occupied by agriculture with
significant areas of natural vegetation, which is usually not of
great economic significance, hence little or no preventative
measures are undertaken there.
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The factors: distance from geological boundaries, dis-
tance from surface waters and flow length, proved to be insig-
nificant for landslide occurrence and were excluded from fur-
ther analyses.

As regards the trigger factors (which were not included in
the model calculation as they represent components of hazard
modelling), an average annual rainfall intensity above
1000 mm/year proved to be a critical trigger factor for land-
slide occurrence in looser soils in eastern parts of Slovenia
(Paleogene and Neogene deposits) and an annual amount of
rainfall above 1600 mm/year influences the landslide trigger
in less resistant rocks (Paleogene, Neogene and Permo-
Carbonian rocks). Despite these indications there is reason-
able doubt that average annual rainfall intensities play an im-
portant triggering role in landslide occurrence. Most probably
the long-term rainfall attributes to the earlier triggering condi-
tions during intensive short-term rainfall.

On the contrary, maximum 24-hour rainfall intensity above
100 mm proved to be critical for landslide occurrence, espe-
cially in looser soils and in less resistant rocks (Quaternary,
Tertiary, Triassic and Permo-Carbonian rocks). The trend is
similar to the one of the average annual rainfall. The results
prove the assumption that for the triggering of landslides in
landslide — susceptible soils and rocks, lower amounts of rain-
fall (around 130 mm/24 h, after Komac, 2005) are sufficient.

Landslide occurrence positively correlates with the ampli-
tude of peak ground acceleration (PGA). The value of the design
ground acceleration that proved to be significant for the landslide
occurrence is 0.15 g. This is mainly influenced by the relatively
large number of landslides (124) in the area of one unit, which is
classified among soft rocks. The lower number of landslides in
the areas of PGA of 0.25 g is due to the fact that the majority of
these areas lie on flat plains or consist of solid rocks.

LANDSLIDE SUSCEPTIBILITY
MODELLING

The results of the statistical analyses presented in section
“General results of analyses” formed a basis for prediction

modelling, in this case a regional landslide susceptibility as-
sessment for the area of Slovenia. Using equation [2] a mathe-
matical model was developed and the result represented in the
form of a GIS raster dataset and its visualisation, a map. A re-
gional landslide susceptibility map of Slovenia at a scale of
1:250 000 is a final product of the mathematical modelling
based on factors that govern landslide occurrence and hence
landslide susceptibility. Based on expert decisions and litera-
ture [5-10° by OAS (1991); 6-10° by Jager and Wieczorek
(1994); 5.7° by Ricchetti (2000)], the areas with slope inclina-
tions of less than 5° were classified into the lowest possible sus-
ceptibility class. In the areas with slope inclinations of less than
5°, where no landslides should occur, 55 (roughly 5.1%) of
these phenomena from the testing sub-set are present. The error
of this 5% of landslides is most probably the consequence of
generalisation of the DEM (generalisation of slopes of river ter-
races) and due to coarse analysis scales. The error is present in
all of the models. The 28% of the total area of Slovenia that
these “flat” terrains cover is represented in each model by the
lowest 28 classes, to which equal and minimum landslide sus-
ceptibilities were assigned. To each of these 28 classes equal
proportions of 55 landslides were assigned (0.183% per class).
All 156 169 models were ranked according to the propor-
tion of landslides occurring in the 15% of the area with the
highest landslide susceptibility score. The average error, i.e. the
number of landslides that occurred in the area that was classi-
fied as averse to landslides for all models, was 192.6 (23%),
while the median was 193 (23%) and the mode was 202
(23.9%) with 2362 hits. The lowest error was 136 (17.75%)
and the highest error was 289 (32%). Table 3 represents weight
values for 13 models: 12 models calculated from the ranking
results and 1 model taken from Komac and Ribi¢i¢ (2006) for
comparison. Except for the first “Best” and the last “Expert de-
cision model — EDM”, weight values were average values of
several models. The best model (Best) represents the model that
among all 156 169 models gave the best results. Although this
model shows the best results it is most probably biased and rep-
resents an over-trained model. To avoid this, average weight
values for the best 10, 25, 50, 100, 1562 and 7808 models were

Table 3
Weight values of spatio-temporal factors for each model

MODEL Abbreviation EG SLP CURV ASP CLC D_EL
Best m_b 0.3 0.2 0.14 0.02 0.26 0.08
Average best 10 m_b10 0.308 0.2 0.136 0.02 0.254 0.082
Average best 25 m_b25 0.3088 0.2008 0.1384 | 0.02 0.2656 0.0664
Average best 50 m_b50 0.3136 0.2016 0.142 0.02 0.2684 0.0544
Average best 100 m_b100 0.3258 0.2056 0.12 0.0248 0.2724 0.0514
Average best 1562 m_b1562 0.3469 0.21579 | 0.08063 | 0.04052 | 0.27287 | 0.04329
Average best 7808 m_b7808 0.32804 | 0.22974 | 0.07571 | 0.04626 | 0.27434 | 0.0459
Average error mean m_b_avr 0.366 0.28985 | 0.12532 | 0.08406 | 0.0891 0.04567
Average median m_b_med 0.366 0.28985 | 0.12532 | 0.08406 | 0.0891 0.04567
Average error model m_b_frq 0.35482 | 0.32086 | 0.12353 | 0.08422 | 0.07101 | 0.04556
Expert decision model m_edm 0.3 0.25 0.1 0.05 0.25 0.05
Worst model m_w 0.2 0.26 0.28 0.2 0.0 0.06
3 factors m_3f 0.39474 | 0.26316 | 0.0 0.0 0.34211 | 0.0
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Table 4

Cumulative distribution of landslide testing sub-set (LO% for 13 models according to the uppermost

susceptible (LSUSC) 30% o

the study area

Cumulative proportions of landslide testing sub-set [%]
_fsaﬂ‘gc [Q] mb mbl0 m b25 mb50 m_blo0 m bl562 m b7808 m_b avr m_b med mb frq m_edm mw m 3f
100 1 1087 10.87 1087 1078 1115 1115  11.06 9.67 9.67 892 1041 474 957
99 2 1496 1496 1487 1487 1552 1747 1766 1515 1515 1403 1645 836 20.17
98 3 2119 21.84 2147 2100 2230 2407 2388 1859 1859  17.75 2277 1143 23.70
97 4 27.88 27.97 2825 2844 2890 2825 2844 2268 2268 2138 2881 1422 28.44
96 5 3300 3309 3281 3309 23318  32.62 3262 2714 2714 2528 3281 17.19 32.16
95 6 3652 3680 3652 3634 3690 3671 3662 3048 3048 2000 3643 19.89 34.76
94 7 39.03 3913 3922 3885 3941 4033 4052  33.83 3383 3271 4024 2249 3857
93 8 4247 4229 4284 4294 4331 4303 4294 3727 3727 3550 4349 2407 42.94
92 9 4517 4526 4507 4507 4507 4526 4572 3941 3941 3838 4507 26.30 44.70
91 10 4721 4712 4730 4721 4740 4749  47.03 4210 4210 4117 4749 29.09 47.03
90 11 4981 49.44 4991 4963 4963 4916  49.91 4442 4442 4359 4954 3030 48.14
89 12 5112 5112 5121 5121 5177 5167 5195  46.84 4684 4554 5112 32.06 5121
88 13 5316 5307 5362 5372 5372 5381 5372 4879 4879 4712 5316 33.92 52.79
87 14 5520 5530 5520 5511 5530 5502 5520  51.02 5102 4972 5511 3597 5539
86 15 56.78 56.60 56.88 5678 57.25  57.34 5651 5335 5335 5195 5771 37.36 57.34
85 16 5864 58.83 5883 5864 5874 5911 5911 5483 5483 5344 5001 39.68 58.36
84 17 6022 6041 60.04 6022 6059 6032 6059 5595 5595 5520  60.13 40.80 59.76
83 18 6152 6171 6162 6171 6199 6190 6190 5743 5743 5651 6162 4182 6115
82 19 6283 6310 6273 6283 6320 6329 6255 5892 5892 5771  62.64 43.77 61.90
81 20 6422 6431 6459 6450 6441 6450 6422 6041 6041 5967 6441 4535 6431
80 21 6543 6533 6524 6524 6533 6552 6599 6217 6217 6125 6561 47.21 66.08
79 22 66.45 6645 6654 6617 6682  67.10  67.38 6338 6338 6329  66.82 4870 67.19
78 23 6757 67.38 67.84 67.75 6757  67.84  68.49 6478 6478 6413 6840 50.56 68.68
77 24 68.96 6877 6859 6840 6896 6924  69.24  66.08  66.08 6561 6952 52.97 70.26
76 25 69.98 7017 69.89 6989 69.98 7035 7100 6757  67.57 6673 7045 5474 71.47
75 26 7138 7100 7128 7091 70.82  7.75 7221 6840 6840  67.75 7156 56.32 71.93
74 27 7286 7230 7249 7268 7230 7258 7342  69.70  69.70 6896  73.14 57.81 7361
73 28 7435 7426 7435 7407 7416 7388 7435 7063  70.63  69.89 7454 59.76 74.72
72 29 7565 7584 7584 7584 7565 7509 7565 7230 7230 7119  76.02 60.87 75.84
71 30 7695 7630 76.67 7667 77.14 7630  76.86 7323 7323 7221  76.77 6162 7658
(1) LO in upper
18% of LSUSC 5678 56.60 56.88 5678 57.25  57.34 5651 5335 5335 5195 57.71 37.36 57.34
[%]
LOINUPRET 959 061 956 957 956 948 949 944 944 938 949 915 931
(3) NoLO in
lower 50% of 718 716 716 716 716 716 726 727 727 727 721 721 725
LSUSC
(k‘;)pg;)'(‘g‘lf]dex 0.856 0856 0851 0852 0851 0842 0854 0850 0850  0.844 0856 0819 0834

The cumulative proportions of landslides are given for every percent of the area. The column “A” represents the cumulative proportion of the area, start-
ing with the most susceptible percentage of the study area, ranked as 100 (column “Rank_LSUSC”). The last three rows represent: (1) — proportion of
the landslides in the upper 15% of the area, according to landslide susceptibility, (2) — number of landslides from the training sub-set in the upper 50% of
the area, according to landslide susceptibility, (3) — number of cells where no landslides should occur in the lower 50% of the area, according to landslide
susceptibility, (4) — values of Cohen’s kappa index. Number of landslide occurrences (LO) — 1076; number of control points where no landslides should

occur — 729

calculated. The last two represent the upper 1% and upper 5%
of the population respectively. In addition to these 7 models,
average weight values of models with median error (MED), av-
erage error (AVR), mode error (FRQ), the worst model (W),
and the model calculated from the three most important factors
— lithology (EG), slope (SLP) angle and land-cover (CLC) —
were calculated.

All models were tested for the accuracy of the prediction of
test points using prediction rate curves (Fig. 3) and Cohen’s
kappa (k) index [equation 3] shown in Table 4. In Table 4 the
cumulative distributions of the proportion of the landslide
training sub-set by the proportion of the area for 6 of the 13
models developed are represented and Figure 3 shows the pre-
diction rate curves for the testing sub-set according to the land-
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slide susceptibility classes for each
model. For the purpose of clear landslide
distribution presentation only, the 30

Table 5

Distribution of landslide susceptibility classes’ areas for the model m_b7808

most susceptible classes that equal 30% A Landslid Landslide
of the research area were chosen, while Class %] Model values sus?:gp?itl)iﬁty proportion LO vs. A ratio
quality assessment focused on the top %l
50% of the research area as being the L 21.88 0-097 none 446 0.16
most susceptible to landslides. 2 18.45 0.97-2.67 very low 6.78 0.37

For each of the calculated models, the 3 19.82 2.67-4.15 low 8.45 0.43
results of the quality assessment approach 4 10.43 4.15-5.50 moderate 1161 111
described are listed at the end of Table 4. 5 1558 5.50-7.09 h'gh_ 26.18 1.68
From the comparison of the quality as- 6 7.84 7.09-9.88 very high 42.53 5.43

sessment results it can be deduced that the
best results were achieved by the model
that gave the best results among automati-
cally calculated models with random
weight combinations (m_b), the model
calculated from the average weight values
of the best 10 models (m_b10), and (sur-
prisingly) the model with weight values defined by an expert.
The kappa value for all three of them was 0.856. Next to those
three models came model m_b7808, calculated from the aver-
age weight values of the best 5% of all (or 7808) models with
kappa 0.854, followed by the model m_b50 (best 50 models)
with kappa 0.852, and by the models m_b25 (best 25 models)
and m_b100 (best 100 models) with kappa 0.851. For compari-
son, the worst model’s kappa value was 0.81. The fact that even
the worst model’s kappa had such a high value is the result of
ranking classes within each factor according to landslide occur-
rence probability prior to modelling. The random model’s
kappa value was 0.019.

To avoid the over-fitting of the developed landslide sus-
ceptibility model, model m_b7808 would seem to be the obvi-
ous choice for the reliable landslide susceptibility model, al-
though the success of the model based on an expert decision
should not be neglected, but the model should enable reliable,
independent and repeated landslide susceptibility prediction.
Based on a good kappa value and the reasons stated above, the
model m_bh7808 was chosen as the most successful and suit-
able landslide susceptibility model. At only 14% of the area
55.2% of landslides occur and on less than 1/3 of the area
(33%), 79.65% and at 50% of the area 88.01% of landslides
occur. In Table 5 basic characteristics of the model m_b7808,
values of reclassified susceptibility classes and their area pro-
portions are represented. The model m_b7808 is represented
in a form of a landslide susceptibility map of Slovenia at a
scale of 1:250 000 (Fig. 4) where new descriptive classes
were defined on natural breaks or on Jenk’s optimisation
technique (Jenks, 1967) in the value distribution to maximise
the between-class and minimise within-class differences. In
the class of the highest landslide susceptibility the areas
where on average 5.43 times more landslides occurred than
expected were classified. The class represents 7.8% of the
area ranked as the top for landslide susceptibility, and com-
prises 42.5% of landslides. All areas where the landslide to
area ratio is greater than 1 (1.68 on average) were placed in
the class of high landslide susceptibility that spreads over
15.6% of the total area, and in which 26.2% of landslides

viation is 2.6

Column “A” represents the proportion of the area covered by a given class (column “Class”). Col-
umn “Model values” represents the range of model values for a given class in model m_b7808.
“Landslide susceptibility” defines the description of susceptibility. “Landslide proportion” — states
the proportion of landslides in a given class, and “LO vs. A ratio” shows the ratio of landslide propor-
tion in relation to the given class area proportion. Mean of the model values is 3.27 and standard de-

were located. The class of moderate landslide susceptibility
comprises areas where the landslide to area ratio is near or
equal to 1 (1.11 on average). In this class, which spreads over
11.6% of the area, 10.6% of landslides occurred. In the areas
with low landslide susceptibility that spreads over 19.8% of
the area, 8.5% of landslides occur, and in the areas with very
low, but still some landslide susceptibility, covering 18.5% of
the Slovenian area, 6.8% landslides occur. The rest of the area
belongs to the “landslide safe” zone. Here 4.5% of landslides
occur. This error is, as already presented, a consequence of a
coarse analytical scale, but for the purpose of a landslide sus-
ceptibility model on a regional scale, it is an acceptable error.
Cumulatively in the first class 42.5%, in the first two 68.7%,
in the first three 80.3%, and in the upper four susceptibility
classes 88.8% of landslides occur. In the lowest two landslide
susceptible classes, 11.2% of landslides occur.

Besides lithology (factor EG) and slope inclination (factor
SLP), the land-cover type (factor CLC) showed itself to be an
important factor for landslide susceptibility modelling. It can be
concluded that for regional (and most probably also for larger)
areas these three factors can form a basis for landslide suscepti-
bility modelling by themselves.

CONCLUSIONS

The creation of a landslide susceptibility map on a regional
scale is a challenging task comprised of many steps, from land-
slide data collection, through data analyses to susceptibility
model calculation and selection of the best model. The first step
in achieving this goal was the assessment of the influence of
several factors on landslide occurrence. Six of the factors tested
proved to have a significant impact on landslide occurrence,
hence they were used to derive 13 final models that were com-
pared in detail to define the most suitable and logical model.

The results of analyses indicated the importance of 3 fac-
tors: lithological or engineering geological characteristics of
rocks and soils; slope inclination; and land use or land-cover
type, the first one playing a slightly more important role than
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Fig. 4. Landslide susceptibility map of Slovenia derived from the model m_b7808 (original scale is 1:250 000)

the latter two. Due to the physical properties of landslides, li-
thology and slope inclinations are logically the most important
factors in landslide susceptibility prediction, but as the results
of the analyses have shown, the land-cover type factor that rep-
resents the land use also plays an important role. Although the
latter is not the most important factor, it still plays an essential
role and cannot be excluded from the model although it can be
substituted by lithology to a certain degree. Using only these 3
factors instead of all 6, models would not achieve such predic-
tion performances since the detail of the model would be lost to
a certain degree, but the results would still be satisfactory.

An important contribution to the quality of the landslide
susceptibility prediction would be the inclusion of factor syn-
chronism of geological strata dip versus slope aspect and incli-
nation, but modelling and interpolation of geological stratal dip
data on a regional scale still represents a considerable challenge
for geologists, GIS and computer capability. Inclusion of this
factor would be logical and feasible at a more detailed level,
such as landslide prediction at the scale of 1:25 000.

The development of landslide susceptibility models, and
later the stages of landslide hazard and landslide risk model-
ling, represents a live cycle, which is ameliorated with every

new discovery, every new (set of) data, with every improve-
ment of modelling approach. A model of high quality and reli-
ability serves as a basis for sound spatial planning regardless of
the scale, at national, regional or on local levels although at the
latter scale better prediction accuracy can be achieved. As ex-
pected, results of susceptibility prediction on a regional scale
do not achieve prediction levels of landslide susceptibility
models on a local scale due to generalised input data. Still they
represent a sound overview of the status in Slovenia as a whole
and a solid foundation for strategic spatial planning as warning
information.
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