PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wieloetapowa dolomityzacja w sukcesji triasu dolnego i środkowego serii wierchowej (Tatry Zachodnie, Polska)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Multi-stage dolomitization in the Lower–Middle Triassic succession of the High-Tatric series (Western Tatra Mts., Poland)
Języki publikacji
PL
Abstrakty
EN
The paper is focused on multi-stage dolomitization process in the Lower-Middle Triassic succession of the High-Tatric series from the Western Tatra Mts. Lower and Middle Triassic bedded dolostones have several features indicating their early-diagenetic (synsedimentary) origin: preservation of sedimentary structures, fine-grained fraction (except redeposited deposits), relatively high concentration of siliciclastics, pseudomorphs after sulfates, lack of benthic fauna (except storm deposits). This can also be identified by presence of teepee structures and solution-collapse breccias. The sedimentological features and δ13C values may lead to conclusion that bedded dolostones were formed in the hypersaline environment, within supra- to interitidal zone. The part of bedded dolostones (mainly Early Triassic and latest Middle Triassic age) were formed during dilution of hipersaline waters by periodic fresh-water inputs. Positive correlation between δ13C and δ18O in dolomitized calcarenites suggests dolomitization with the influence of mixed meteoric and marine (hypersaline) waters. That dolomitization process took place during relatively early stage of burial diagenesis at marine regression times. The δ13C values of dolomitized calcilutites, as well as mosaic and saddle dolomitic cements suggest the dolomitization by solutions of marine origin. The lack of correlation between δ13C and δ18O indicates high temperature of these solutions. The values of δ18O indicate the temperature formation of dolomitic mosaic cements at 45-65°C. Calcilutites were dolomitized at 70-80°C, and saddle dolomite cements were formed in similar thermal conditions (70–85°C). Hydrothermal dolomitization is dated on Middle Triassic time.
Rocznik
Strony
284--293
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • 1.AMTHOR J.E. & FRIEDMAN G.M. 1991 - Dolomite-rock textures and secondary porosity development in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern New Mexico. Sedimentology, 38: 343-362.
  • 2.BAC-MOSZASZWILI M., BURCHART J., GŁAZEK J., IWANOW A., JAROSZEWSKI W., KOTAŃSKI Z., LEFELD J., MASTELLA L., OZIMKOWSKI W., RONIEWICZ P., SKUPIŃSKI A. & WESTWALEWICZ-MOGILSKA E. 1979 - Mapa geologiczna Tatr Polskich w skali 1 : 30 000. Wyd. Geol., Warszawa.
  • 3.BADIOZAMANI K. 1973 - The Dorag dolomitization model, application to the Middle Ordovician of Wisconsin. J. Sediment. Petrol., 43: 965-984.
  • 4.BEŁKA Z. 1976 - Cechy sedymentacyjne utworów węglanowych wierchowego triasu środkowego w rejonie Kominów Tylkowych w Tatrach. Arch. Inst. Geol. Podst. Uniw. Warsz., Warszawa: 81.
  • 5.CHEN D., QING H. & YANG Ch. 2004 - Multistage hydrothermal in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology, 51: 1029-1051.
  • 6.FOLK R.L. & LAND L.S. 1975 - Mg/Ca ratio and salinity. Two controls over crystallization of dolomite. AAPG Bull., 59: 60-68.
  • 7.FRIEDMAN G.M. 1964 - Early diagenesis and lithification in carbonate sediments. J. Sediment. Petrol., 34: 777-813.
  • 8.HARDIE L.A. 1987 - Dolomitization: a critical view of some current views. J. Sediment. Petrol., 57: 166-183
  • 9.KORTE Ch., KOZUR H.W. & VEIZER J. 2005 - δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for cśval seawater and paleotemperature. Palaeogeogr., Palaeoclim., Palaeoecol., 226: 287-306.
  • 10.KOTAŃSKI Z. 1956 - Kampil wierchowy w Tatrach. Acta Geol. Pol., 6: 65-73.
  • 11.KOTAŃSKI Z. 1959 - Profile stratygraficzne serii wierchowej Tatr polskich. Biul. Inst. Geol., 139: 7-139.
  • 12.KOTAŃSKI Z. 1961 - Tektogeneza i rekonstrukcja paleogeograficzna pasma wierchowego w Tatrach. Acta Geol. Pol., 11: 186-476.
  • 13.KOZUR H. 1991 - The evolution of the Meliata-Hallstatt ocean and its significance for early evolution of the Eastern Alps and Western Carpathians. Palaeogeogr., Palaeoclim., Palaeoecol., 87: 109-135.
  • 14.LAND L.S. 1980 - The isotopic and trace element geochemistry of dolomite: the state of the art. [W:] Zenger D.H., Dunham J.B. & Ethington R.L. (red.) Concepts and models of dolomitization. SEPM Spec. HOEFS J. 1997 - Stable isotope geochemistry. Springer-Verlag, Berlin: 201.
  • 15.JAGLARZ P. 2007 - Ewolucja basenu Tatricum od późnego oleneku do noryku w Tatrach Polskich. Arch. Bibl. Inst. Nauk Geol. Uniw. Jagiell., Kraków: 188.
  • 16.JAGLARZ P. & RYCHLIŃSKI T. 2005 - Struktury wynurzeniowe w utworach triasu jednostki wierchowej i kriżniańskiej Tatr. Prz. Geol., 53: 880-881.
  • 17.JAGLARZ P. & RYCHLIŃSKI T. 2010 - Uwagi do nomenklatury skał węglanowych triasu tatrzańskiego. Prz. Geol., 58: 327-334.
  • 18.JAGLARZ P. & SZULC J. 2003 - Middle Triassic evolution of the Tatricum sedimentary basin: an attempt of sequence stratigraphy to the Wierchowa Unit in the Polish Tatra Mountains. Ann. Soc. Geol. Pol., 73: 169-182.
  • 19.JAGLARZ P. & UCHMAN A. 2010 - A hypersaline ichnoassemblage from the Middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, Southern Poland. Palaeogeogr., Palaeoclim., Palaeoecol., 292Publ., 28: 87-110.
  • 20.LINTNEROVÁ O. & HLADÍKOVÁ J. 1992 - Distribution of stable O and C isotopes and microelements in Triassic limestones of the Veterlín Unit, the Malé Karpaty Mts.: their diagenetic interpretation. Geol. Carpath., 43: 203-212.
  • 21.LONGMAN M.W. 1980 - Carbonate diagenetic textures from near- -surface diagenetic environments. AAPG Bull., 64: 461-487.
  • 22.LUCZAJ J.A. 2006 - Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch - a case for hydrothermal diagenesis. AAPG Bull., 90: 1719-1738.
  • 23.MACHEL H.G. & LONNEE J. 2002 - Hydrothermal dolomite - a product of poor definition and imagination. Sediment. Geol., 152: 163-171.
  • 24.MAGARITZ M., GOLDENBERG L., KAFRI U. & ARAD A. 1980 - Dolomite formation in the seawater-freshwater interface. Nature, 287: 622-624.
  • 25.MARYNOWSKI L., GAWĘDA A., POPRAWA P., ŻYWIECKI M.M., KĘPIŃSKA B. & MERTA H. 2006 - Origin of organic matter from tectonic zones in the Western Tatra Mountains Crystalline Basement, Poland: an example of bitumen-source rock correlation. Mar. Pet. Geol., 23: 261-279.
  • 26.MATTES B.W. & MOUNTJOY E.W. 1980 - Burial dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta. [W:] Zenger D.H., Dunham J.B. & Ethington R.L. (red.) Concepts and models of dolomitization. SEPM Spec. Publ., 28: 259-297.
  • 27.MEYERS W.J., LU F.H. & ZACHARIAH J.K. 1997 - Dolomitization by mixed evaporative brines and freshwater, Upper Miocene carbonates, Nijar, Spain. J. Sediment. Res., 67: 898-912.
  • 28.MICHALIK J. 1994 - Notes on the paleogeography and paleotectonics of the Western Carpathian area during the Mesozoic. Mitt. Österr. Geol. Gesell., 86: 101-110.
  • 29.MOORE C.H. & DRUCKMAN Y. 1981 - Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana. AAPG Bull., 65: 597-628.
  • 30.MORROW D.W. 1978 - Dolomitization of Lower Paleozoic burrow- -fillings. J. Sediment. Petrol., 48: 295-305.
  • 31.NADER F.H., SWENNEN R. & ELLAM R.M. 2007 - Field geometry, petrography and geochemistry of a dolomitization front (Late Jurassic, central Lebanon). Sedimentology, 54: 1093-1120.
  • 32.PERYT T.M. & SCHOLLE P.A. 1996 - Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits of Poland. Sedimentology, 43: 1005-1023.
  • 33.QING H., BOSENCE D.W.J. & ROSE E.P.F. 2001 - Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48: 153-163.
  • 34.RADKE B.M. & MATHIS R.L. 1980 - On the formation and occurrence of saddle dolomite. J. Sediment. Petrol., 50: 1149-1168.
  • 35.SHINN E.A. 1968 - Practical significance of birdseye structures in carbonate rocks. J. Sediment. Petrol., 38: 215-223.
  • 36.SWART P.K. & EBERLI G. 2005 - The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sediment. Geol., 175: 115-129.
  • 37.TUCKER M.E. & WRIGHT V.P. 1990 - Carbonate sedimentology. Blackwell Scientific Publications, Oxford: 482.
  • 38.VEIZER J. 1970 - Zonal arrangement of the Triassic rocks of theWestern Carpathians: a contribution to the dolomite problem. J. Sediment. Petrol., 40: 1287-1301.
  • 39.VEIZER J. & DEMOVIÈ R. 1974 - Strontium as a tool in facies analysis. J. Sediment. Petrol., 44: 93-115.
  • 40.WARD W.C. & HALLEY R.B. 1985 - Dolomitization in mixing zone of near-seawater composition, late Pleistocene, northeastern Yucatan Peninsula. J. Sediment. Petrol., 55: 407-420.
  • 41.WIECZOREK J. 2000 - Mesozoic evolution of the Tatra Mountains (Carpathians). Mitt. Ges. Geol. Bergbaust. Österr. Wien, 44: 241-262.
  • 42.YOO Ch.M. & LEE Y.I. 1998 - Origin and modification of early dolomites in cyclic shallow platform carbonates, Yeongheung Formation (middle Ordovician), Korea. Sediment. Geol., 118: 141-157.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0035-0084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.