PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sulphur and oxygen isotope signatures of late Permian Zechstein anhydrites, West Poland: seawater evolution and diagenetic constraints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stable oxygen and sulphur isotope ratios of 52 anhydrite samples from three Zechstein anhydrite units (Lower Anhydrite, Upper Anhydrite and Basal Anhydrite) of West Poland show d18O values vs. VSMOW in the range of 9.4 to 15.5% (mean of 12.6 š1.3%), and d34S values vs. VCDT between 9.6 to 12.6%o (mean of 11.4 š0.6%o). A generally uniform distribution pattern of both isotopic values throughout the section, although with some random variation, implies that sulphate ions were sufficiently supplied and the basin was open during sulphate deposition. There is a slight stratigraphic differentiation of both the d18O and d34S values: the highest mean values are shown by the Upper Anhydrite and the lowest average values occur in the Basal Anhydrite. The correlation between d18 O and 8 S values is statistically significant only in case of the Basal Anhydrite. A wide range of oxygen isotopic ratios (from 11.6 to 25. l%o), with only several samples having d18O values that fall within the range of late Permian seawater, have been recorded in anhydrite cements and nodules that occur in the Main Dolomite rocks. Sulphur isotope ratios of anhydrite cements (range of 7.6 to 12.9%o, average of 10.7 š1.4%o) tend to reflect the late Permian sulphur isotopic signature of sulphate in seawater. The higher ranges of d18O and d34S values of anhydrite cements and nodules in the Main Dolomite compared to the underlying and overlying anhydrites are due to diagenetic resetting. The conversion of gypsum to anhydrite (often very early and under negligible cover) evidently did not affect the primary marine stratigraphic sulphur isotope composition of the sulphate deposits.
Słowa kluczowe
Rocznik
Strony
387--400
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • 1.AL-AASM I. S., TAYLOR B. E. and SOUTH B. (1990) - Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol., 80: 119-125.
  • 2.ALONSO-AZCÁRATE J., BOTTRELL S. H. and MAS J. R. (2006) -Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin, Spain. Chem. Geol., 234: 46-57.
  • 3.BOTTRELL S. H. and NEWTON R. J. (2006) - Reconstruction of changes in global sulphur cycling from marine sulphate isotopes. Earth-Sci. Rev., 75: 59-83.
  • 4.BOTTRELL S. H. and RAISWELL R. (2000) - Sulphur isotopes and microbial sulphur cycling in sediments. In: Microbial Sediments (eds. R. E. Riding and S. M. Awramik): 96-104. Springer-Verlag. Berlin.
  • 5.CLAYPOOL G. E., HOLSERW. T., KAPLANI. R., SAKAI H. and ZAK I. (1980) - The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol., 28, 199-260.
  • 6.CORTECCI G., REYES E., BERT G. and CASATI P. (1981) - Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem. Geol., 34: 65-79.
  • 7.DENISON R. E. and PERYT T. M. (2009) - Strontium isotopes in the Zechstein anhydrites of Poland: evidence of varied meteoric contributions to marine brines. Geol. Quart., 53 (2): 159-166.
  • 8.DWORKIN S. I. and LAND L. S. (1994) - Petrographic and geochemical constraints on the formation and diagenesis of anhydrite cements, Smackover sandstones, Gulf of Mexico. J. Sediment. Res., A64: 339-348.
  • 9.DYJACZYNSKI K., GÓRSKI M., MAMCZUR S. and PERYT T. M. (2001) - Reefs in the basinal facies of the Zechstein Limestone (Upper Permian) of Western Poland. J. Petrol. Geol., 24: 265-285.
  • 10.HALAS S. and SZARAN J. (2001) - Improved thermal decomposition of sulfates to SO2 and mass spectromeric determination of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards. Rapid Comm. Mass Spectrom., 15: 1618-1620.
  • 11.HALAS S. and SZARAN J. (2004) - Use of Cu2O-NaPO3 mixtures for SO2 extraction from BaSO4 for sulphur isotope analysis. Isotopes Environ. Health Stud., 40: 229-231.
  • 12.HALAS S., SZARAN J., CZARNACKI M. and TANWEER A. (2007) -Refinements in BaSO4 to CO2 preparation and d18O calibration of the sulfate reference materials NBS-127, IAEA SO-5 and IAEA SO-6. Geostandards and Geoanal. Res., 31: 61-68.
  • 13.HOLSER W. T. and KAPLAN I. R. (1966) - Isotope geochemistry of sedimentary sulfates. Chem. Geol., 1: 93-135.
  • 14.HOVORKA S. (1992) - Halite pseudomorphs after gypsum in bedded anhydrite - clue to gypsum-anhydrite relationships. J. Sediment. Petrol., 62: 1098-1111.
  • 15.HRYNIV S. P. and PERYT T. M. (2003) - Sulfate cavity filling in the Lower Werra Anhydrite (Zechstein, Poland), Zdrada area, northern Poland: evidence for early diagenetic evaporite paleokarst formed under sedimentary cover. J. Sediment. Res., 73: 451-461.
  • 16.JONES G. D. and XIAO Y. (2005) - Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: insights from reactive transport models. Am. Ass. Petrol. Geol. Bull., 89: 577-601.
  • 17.KAMPSCHULTE A., BUHL D. and STRAUSS H. (1998) - The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein basin, northern Germany. Geol. Rundsch., 87: 192-199.
  • 18.KAMPSCHULTE A. and STRAUSS H. (2004) - The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol., 204: 255-286.
  • 19.KARNKOWSKI P. H. (1999) - Origin and evolution of the Polish Rotliegend Basin. Pol. Geol. Inst. Spec. Pap., 3.
  • 20.KIERSNOWSKI H., PAUL J., PERYT T. M. and SMITH D. B. (1995) -Facies, paleogeography, and sedimentary history of the Southern Permian Basin in Europe. In: The Permian of Northern Pangea (eds. P. A. Scholle, T. M. Peryt and D. S. Ulmer-Scholle), 2: 119-136. Springer, Berlin.
  • 21.KIERSNOWSKI H., PERYT T. M., BUNIAK A. and MIKOŁAJEWSKI Z. (2010) - From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela High, West Poland. Geol. J., 45: 319-335.
  • 22.KOVALEVYCH V. M., CZAPOWSKI G., HAŁAS S. and PERYT T. M. (2000) - Chemiczna ewolucja solanek cechsztyńskich basenów ewaporatowych Polski: badania inkluzji fluidalnych w halicie z poziomów soli Na1-Na4. Prz. Geol., 48 (5): 448-454.
  • 23.KOVALEVYCH V. M., PERYT T. M., CARMONA V., SYDOR D. V., VOVNYUK S. V. and HAŁAS S. (2002) - Evolution of Permian seawater: evidence from fluid inclusions in halite. Neues Jahrb. Miner. Abh., 178: 27-62.
  • 24.KOVALEVYCH V. M., PERYT T. M., SHANINA S. N., WIECŁAW D. and LYTVYNIUK S. F . (2008) - Geochemical aureoles around oil and- gas accumulations in the Zechstein (Upper Permian) of Poland: analysis of fluid inclusions in halite and bitumens in salt. J. Petrol. Geol., 31: 245-262.
  • 25.KRAMM U. and WEDEPOHL K. H. (1991) - The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chem. Geol., 90: 253-262.
  • 26.LLOYD R. M. (1968) - Oxygen isotope behavior in the sulphate water system. J. Geophys. Res., 73: 6099-6110.
  • 27.LONGINELLI A. and FLORA O. (2007) - Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: palaeoenvironmentalimplications. Chem. Geol., 245: 275-284.
  • 28.LU F. H., MEYERS W. J. and SCHOONEN M. A. (2001) - S and O (SO4) isotopes, simultaneous modelling, and environmental significance of the Nijar Messinian gypsum, Spain. Geochim. Cosmochim. Acta, 65: 3081-3092.
  • 29.MIZUTANI Y. (1971) - An improvement in the carbon reduction method for the isotopic analysis of sulfates. Geochem. J., 5: 69-67.
  • 30.MIZUTANI Y. and RAFTER T. A. (1969) - Oxygen isotopic composition of sulphates. Part 4. Bacterial fractionation of oxygen isotopes in the reduction of sulphate and in the oxidation of sulphur. N. Z. J. Sc., 12: 60-66.
  • 31.NEWTON R. J., PEVITT E. L., WIGNALL P. B. and BOTTRELL S. H. (2004) - Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet. Sc. Lett., 218: 331-345.
  • 32.NIELSEN H. and RICKE W. (1964) - Schwefel-Isotopenverhältnisse von Evaporiten aus Deuschland; Ein Beitrag zur Kenntnis von d34S im Meerwasser-Sulfat. Geochim. Cosmochim. Acta, 28: 577-591.
  • 33.PERYT T. M., KASPRZYK A. and ANTONOWICZ L. (1996a) - Upper Werra Anhydrite (Zechstein, Upper Permian) in Poland. Bull. Pol. Acad. Sc., Earth Sc., 44: 121-130.
  • 34.PERYT T. M., KASPRZYK A. and CZAPOWSKI G. (1996b) - Basal Anhydrite and Screening Anhydrite (Zechstein, Upper Permian) in Poland. Bull. Pol. Acad. Sc., Earth Sc., 44: 131-140.
  • 35.PERYT T. M., PIERRE C. and GRYNIV S. P. (1998) - Origin of polyhalite deposits in the Zechstein (Upper Permian) Zdrada platform (northern Poland). Sedimentology, 45: 565-578.
  • 36.PERYT T. M. and SCHOLLE P. A. (1996) - Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits of Poland. Sedimentology, 43: 1005-1023.
  • 37.PERYT T. M., TOMASSI-MORAWIEC H., CZAPOWSKI G., GRINIV S. P., PUEYO J. J., EASTOE C. J. and VOVNYUK S. (2005) -Polyhalite occurrence in the Werra (Zechstein, Upper Permian) Peribaltic Basin of Poland and Russia: evaporite facies constraints. Carbonates and Evaporites, 20: 182-194.
  • 38.PERYT T. M. and WAGNER R. (1998) - Zechstein evaporite deposition in the Central European Basin: cycles and stratigraphic sequences. J. Seismic Explor., 7:201-218.
  • 39.PIERRE C. (1985) - Isotopic evidence of the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine saltpans. Chem. Geol., 53: 191-196.
  • 40.PIERRE C. (1989) - Sedimentation and diagenesis in restricted marine basins. In: Handbook of Environmental Isotope Geochemistry. The marine environment (eds. P. Fritz and J. C. Fontes), 3: 247-315. Elsevier, Amsterdam.
  • 41.PLAYA E., CENDÓN D. I., TRAVÉ A., CHIVAS A. R. and GARCÍA A. (2007) - Non-marine evaporites with both inherited marine and continental signatures: the Gulf of Carpentaria, Australia, at ~70 ka. Sediment. Geol., 201: 267-285.
  • 42.RICHARDSON S. M. and HANSEN K. S. (1991) - Stable isotopes in the sulfate evaporites from southeastern Iowa, U.S.A.: indications of postdepositional change. Chem. Geol., 90: 79-90.
  • 43.SCHREIBER B. C. and WALKER D. (1992) - Halite pseudomorphs after gypsum: a suggested mechanism. J. Sediment. Petrol., 62: 61-70.
  • 44.STRAUSS H. (1997) - The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimat. Palaeoecol., 132: 97-118.
  • 45.THODE H. G. and MONSTER J. (1965) - Sulfur-isotope geochemistry of petroleum, evaporites and ancient seas. Mem. Am. Ass. Petrol. Geol., 4: 367-377.
  • 46.WILLIAMS-STROUD S. C. and PAUL J. (1997) - Initiation and growth of gypsum piercement structures in the Zechstein Basin. J. Struct. Geol., 19: 897-909.
  • 47.WORDEN R. H., SMALLEYP. C. and FALLICK A. E. (1997) - Sulfur cycles in buried evaporites. Geology, 25: 643-646.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0027-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.