PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sulphate reduction - methane oxidation: a potential role of this process in the origin of C isotope environmental record in freshwater carbonates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is demonstrated that microbial oxidation of organic compounds (including methane), in freshwater sediments, may result in precipitation of carbonates, which may become an important geochemical archive of palaeoenvironmental variations. Most probably low 13C value in calcite in eutrophic systems results from an advanced oxidation of organic compounds in turbulent or/and sulphate-rich conditions. Likewise, high 13C value in calcite from organic-rich sediments may evidence low red-ox potential of the freshwater system. More advanced studies might help to calibrate a new tool for palaeoenvironmental reconstructions. Oxidation of methane and organic matter results in significant isotope effects in sulphates dissolved in water. Therefore, to better understand the origin of carbon isotope signal in carbonates, concentration and stable isotope measurements in dissolved sulphate (water column), bubble methane and calcite (freshwater sediments) have been carried out in 24 lakes, 2 ponds and 4 rivers in Poland. Dissolved sulphate is a major compound of freshwater systems and sulphur, being an important bioelement, controls many processes in lakes therefore quality of water (e.g. microbial sequestration of organic compounds, inhibitor of methane ebullitive flux). The highest concentration of sulphate has been detected in rivers (85.47 SO42-mg/l) and an artificial lake (70.3 SO42 -mg/l) located in the extremely -polluted region called the "Black Triangle". The lowest concentration of sulphate are found in dystrophic and mountain lakes (from 0.5 to about 3 SO42- mg/l ). The lowest δ34S(SO42-) and δ18O(SO42-) values occur in unpolluted lakes in Eastern Poland (-0.94 and 1.38‰, respectively). The highest δ34S(SO42-) and δ18O(SO42-) values are found in polluted lakes in western Poland and dystrophic lakes (12.95 and 16.15‰, respectively). It is proposed that δ34S(SO42-) and δ18O(SO42-13C(CH4) water column, in a strongly contaminated lake, is observed. This is probably due to a loss of biological buffering potential of the lake accompanied by an active oxidation of methane precursors.
PL
W pracy wykazano, że węglany jeziorne powstałe w wyniku mikrobiologicznego utleniania związków organicznych (w tym metanu), przy redukcji jonów siarczanowych, mogą stanowić ważny geochemiczny zapis zmian środowiskowych. Najprawdopodobniej niskie wartości 13C w kalcycie, w rzekach i jeziorach eutroficznych wynikają z silnego utleniania związków organicznych w warunkach turbulencji i/lub podwyższonych stężeń siarczanu. Podobnie, wysokie wartości 13C w kalcycie, zawartym w osadach słodkowodnych bogatych w materię organiczną, mogą wskazywać na niski potencjał redox. Na podstawie tego typu badania wydaje się możliwe wykalibrowanie nowego narzędzia do rekonstrukcji palaeośrodowiskowych. Z drugiej strony, utlenianie metanu (związków organicznych) może powodować wzbogacenie rezydualnego jonu siarczanowego w ciężkie izotopy tlenu i siarki. Dlatego, aby lepiej zrozumieć sygnał izotopowy w węglanach jeziornych, wykonano badania stężenia i badania izotopowe siarczanu kolumny wodnej oraz badania metanu i kalcytu w osadach 24 jezior, 2 stawów i 4 rzek w Polsce. Rozpuszczony jon siarczanowy jest jednym z głównych składników rozpuszczonych w wodach jeziornych, a siarka, jako istotny biopierwiastek, wpływa na procesy zachodzące w jeziorach, w tym na jakość wód (mikrobiologiczny rozkład związków organicznych, inhibitor metanogenezy). Najwyższe stężenie jonu siarczanowego stwierdzono w rzekach (85,47 ncentration of sulphate has been detected in rivers (85.47 SO42- mg/l) i sztucznym jeziorze (70,3 SO42 -42- mg/l) w regionie silnego zanieczyszczenia (tzw. "Czarny Trójkąt") w Polsce południowo-zachodniej. Najniższe stężenie siarczanu stwierdzono w jeziorach dystroficznych i oligotroficznych - górskich (od 0,5 do 3 mg/l SOSO42 -). Najniższe wartości δ34S(SO42-) i δ18O(SO42-) występują w niezanieczyszczonych jeziorach wschodniej Polski (-0,94 i 1,38‰). Najwyższe wartości δ34S(SO42-) i δ18O(SO42-) stwierdzono w Polsce zachodniej i jeziorach dystroficznych (12,95 i 16,15‰). Wykazano, że. δ34S(SO42- i δ18O(SO42-) jezior mogą być dobrym narzędziem do ilościowej charakterystyki antropopresji (kwaśne opady) oraz do monitorowania zmian trofii i procesów redoks związanych z biodegradacją związków organicznych w osadach i kolumnie wodnej. W przeciwieństwie do czystych jezior, jeziora silnie zanieczyszczone jonem siarczanowym wykazują wzrost wartościδ13C(CH4) wraz ze wzrostem głębokości kolumny wodnej. Może to być wskaźnikiem utraty przez jezioro mikrobiologicznej zdolności buforującej.
Rocznik
Tom
Strony
18--34
Opis fizyczny
Bibliogr. 108 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50-205 Wrocław, Poland, morion@ing.uni.wroc.pl
Bibliografia
  • 1. ABRAM J.W., NEDWELL N.B., 1978 - Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117: 89-92.
  • 2. AGGARWAL P.K., FULLER M.E., GURGAS M.M., MANNING J.F., DILLON M.A., 1997 - Use of stable oxygen and carbon isotope analyses for minitoring of pathwats and rates of intrinsic and enhanced in situ biodegradation. Environ. Sci. Technol. 31:590-596.
  • 3. ALPERIN M.J., REEBURGH W.S., 1984 - Geochemical observations supporting anaerobic methane oxidation. In: Microbial growth on C-1 compounds (eds. R.L. Crawford and R.S. Hanson): 282-289. American Society for Microbiology. Washington, D.C.
  • 4. ALPERIN M.J., REEBURGH W.S., 1985 - Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol. 50: 940-945.
  • 5. BARON H., SOBIK M., 1995 - The role of atmospheric deposition in acidification of the environment of Karkonosze Mts. [in Polish with English Sum.]. Acta Univ. Wratisl. Pr. Inst. Geogr. Ser. C, 1705: 59-73.
  • 6. BLAIR N.E., ALLER R.C., 1995 - Anaerobic methane oxidation on the Amazon shelf. Geochim. Cosmochim. Acta 59: 3707-3715.
  • 7. BÖTTCHER M.E., THAMDRUPB., 2001 - Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulphur disproportionation in the presence of MnO2. Geochim.Cosmochim Acta, 65: 1573-1581.
  • 8. BRICK C.M., MOORE J.N., 1996 - Diel variation of trace metals in the upper Clark Fork River, Montana. Envir. Sci. Technol., 30: 1953-1960.
  • 9. BRINGMARK L., 1977-A bioelement budget of an old Scots pine forest in central Sweden. Silva Fennica, 11: 201-209.
  • 10. CAPPENBERG T.E., 1974 - Interrelations between sulphate-reducing methane-producing bacteria in bottom deposits of a freshwater lake. I. Field observations. J. Microbiol. Serol. 40: 285-295.
  • 11. CAPPENBERG T.E., PRINS R.A. 1974 - Interaction between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. 3. Experiments with 14C-labeled substrates. J. Microbiol. Serol. 40: 457-469.
  • 12. COLDEA G., PLAMADA E., 1978 - Ecosystem processes in a stand of Pinus mugo Turra. I. Standing crop, dry matter production and litter fall. Flora, 167: 249-256.
  • 13. CONRAD R., 1989 - Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (eds. M.O. Andreae and D.S. Schimel): 39-58. Dahlem Konferenzen. Wiley & Sons, Nowy Jork.
  • 14. CONRAD R., 1996 - Anaerobic hydrogen metabolism in aquatic sediments. Mitt. Internat. Verein. Limnol. 25: 15-24.
  • 15. CONRAD R., SCHUTZ H., BABBEL M., 1987 - Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol. Lett. 45: 281-289.
  • 16. CORTECCI G., DINELLI E., BENCINI A., ADORNI-BRACCESI A., LA RUFFA G., 2002 - Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl. Geochem. 17:79-92.
  • 17. DANSGAARD W., 1964 - Stable isotopes in precipitation. Tellus, 16: 436-468.
  • 18. DEVOL A.H., 1983 - Methane oxidation rates in the anaerobic sediments of Saanich Inlet. Limnol. Oceanogr., 28: 738-742.
  • 19. DEVOL A.H., ANDERSON J.J., KUIVILA K., MURRAY J.W., 1984 - A model for coupled sulphate reduction and methane oxidation in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta, 48: 993-1004.
  • 20. DORE A.J., SOBIK M., MIGAŁA K., 1999 - Patterns of precipitation and pollutants deposition in the western Sudete mountains, Poland.. Atmos. Envir., 33: 3301-3312
  • 21. FRITZ P., BASHARMAL G.M., DRIMMIE R.J., IBSEN J., QURESHI R.M., 1989 - Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. (Isot. Geosc. Sec.), 79: 99-105.
  • 22. HABICHT K. S., CANFIELD D.E., RETHMEIER J., 1998 - Sulphur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochm.Cosmochim. Acta, 62: 2585-2595.
  • 23. HAŁAS S., 1979 - An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer. J.Phys. E.: Sci. Instrum., 12: 418-420.
  • 24. HAŁAS S., SKORZYŃSKI Z., 1980 -An inexpensive device for digital measurements of isotopic ratios. J. Phys. E.: Sci. Instrum., 13: 346-349.
  • 25. HAŁAS S., WOŁĄCEWICZ W., 1981 - Direct extraction of sulphur dioxide from sulfates for isotopic analysis. Anal. Chem., 53: 685-689.
  • 26. HARRISON A. G., THODE H.G., 1958 - Mechanism of bacterial reduction of sulphate from isotope fractionation studies. Trans.Faraday Soc., 54: 84-92.
  • 27. HENRICHS S.M., REEBURGH W.S., 1987 - Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J., 5: 191-237.
  • 28. HINES M.E., BUCK J.D., 1982 - Distribution of methanogenic and sulphater-educing bacteria in near-shore marine sediments. Appl. Environ. Microbiol., 43: 447-453.
  • 29. HOEHLERT.M., ALPERINM.J., ALBERT D.B., MARTENS C.S., 1994 - Field and laboratory studies of methane oxidation in an anoxix marine sediment: Evidence for a methanogen-sulphate reducer consortium. Glob. Biogeochem. Cycles, 8: 451-463.
  • 30. HORNIBROOK E.R.C., LONGSTAFFE F.J., FYFE W.S., 1997 - Spatial distribution of microbial methane production pathways intemperate zone wetland soils: Stable carbon and hydrogen isotope evidence. Geochim. Cosmochim. Acta, 61: 745-753.
  • 31. HORNIBROOK E.R.C., LONGSTAFFE F.J., FYFE W.S., 2000 - Factors influencing stable isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: Implications for S-signatures of emissions. Isot. Envir. Health St., 36, 3: 151-176.
  • 32. HOVMAND M.F., 1999 - Cumulated deposition of strong acid and sulphur compounds to a spruce forest. For. Ecol. and Manag., 114: 19-30.
  • 33. INGVORSENK., BROCK T.D., 1982 -Electron flow via sulphate reduction and methanogenesis in the anaerobic hypolimnion of Lake Mendota. Limnol. Oceanogr., 27: 559-564.
  • 34. IVERSENN., BLACKBURN T.H., 1981 - Seasonal rates of methane oxidation in anoxic marine sediments. Appl. Environ. Microbiol., 41: 1295-1300.
  • 35. IVERSEN N., JORGENSEN B.B., 1985 - Anaerobic methane oxidation rates at the sulphate-methane transition in marine sediments from Kattegat and Skagerak (Denmark). Limnol. Oceanog., 30: 944-955.
  • 36. JĘDRYSEK M.O., 1995 - Carbon isotope evidence for diurnal variations in methanogenesis in freshwater lake sediments. Geochim. Cosmochim. Acta, 59: 557-561.
  • 37. JĘDRYSEK M.O., 1997 a - Ebullitive flux of early-diagenetic methane from recent freshwater sediments in lake Nowa Cerekiew (SW Poland). Ann. Soc. Geol. Pol., 67: 451-461.
  • 38. JĘDRYSEK M.O., 1997 b - Spatial and temporal variations in carbon isotope ratio of early-diagenetic methane from freshwater sediments: methanogenic pathways. Acta Univ. Wratisl. Pr. Geol.-Miner., 63: 1-110.
  • 39. JĘDRYSEK M.O., 1998 - Isotope composition of and CH as a new quantitative tool to asses antropopression, degradation and trophy of lake environment: a primary model [in Polish]. In: Zagrożenia Degradacyjne a Ochrona Jezior (Degradational endanger and protection of lakes) (eds. W. Lange and D. Borowiak). Ser. Bad. Limnol., 1: 73-84. Wyd. DJ. Gdańsk.
  • 40. JĘDRYSEK M.O., 1999 - Spatial and temporal patterns in diurnal variations of carbon isotope ratios of early-diagenetic methane from freshwater sediments. Chem. Geol., 159: 241-262.
  • 41. JĘDRYSEK M.O., 2000 - Oxygen and sulphur isotope dynamics in the SO42- of an urban precipitation. Water Air Soil Poll., 117, 15-25.
  • 42. JĘDRYSEK M.O., KROUSE H.R., TAKAI Y., YOSHIBA T., WADA E., 1991 - Preliminary sulphur isotope study on possible two paths oxidation-reduction isotope effect in rice plants. Institute of Physics, Maria Curie-Skłodowska University Report: 132-133.
  • 43. JĘDRYSEK M.O., HAŁAS S., WADA E., SOKOŁOWSKI K., FILUS M.S., TAKAIY., RADWAN S., 1994 - Carbon isotope evidence for seasonal and spatial variations of methanogenesis during early diagenesis in freshwater lake sediments, Poland. In: Isotope Workshop II (International Isotope Society and University of Wrocław). Extended Abstracts (ed. M.O. Jędrysek): 69-73. Książ Castle.
  • 44. JĘDRYSEK M.O., KAŁUŻNY A., HOEFS J., 2002 – S and O isotope ratios in spruce needles as a tracer of atmospheric pollution. J. Geophys. Res. Atmos., 107, (D18): ACH5-1 - ACH5-12.
  • 45. KAŁUŻNY A., 2002 - Isotopic record of sulphur geochemical cycle: an example from the forested region of Karkonosze Mts. [in Polish with English Abst.]. PhD thesis, unpublished. University of Wrocław. Poland.
  • 46. KAPLAN I.R., RITTENBERG S.C., 1964 - Microbial fractionation of sulphur isotopes. J. Gen. Microbiol., 34: 195-212.
  • 47. KIENE R.P., VISSCHER P.T., 1987 - Production and fate of methylated sulfur compounds from methionine and dimethylsufoniopropionate in anoxic marine sediments. Appl. Environ. Microbiol., 53, 2426-2434.
  • 48. KIENE R.P., OREMLAND R.S., CATENA A., MILLER L.G., CAPONE D.G., 1986-Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by pure culture of an eustuarine methanogen. Appl. Environ. Microbiol., 52: 1037-1045.
  • 49. KING G.M., 1984 a - Utilization of hydrogen, acetate and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol. J., 3: 275-306.
  • 50. KING G.M., 1984 b - Metabolism of trimethylamine, choline and glycine betaine by sulphate-reducing and methanogenic bacteria in marine sediments. Appl. Environ. Microbiol., 48: 719-725.
  • 51. KING G.M., KLUG M.J., LOVELY D.R., 1983 - Metabolism of acetate, methanol and methylated amines in intertidal sediments of Lowest Cove, Maine. Appl. Environ. Microbiol., 45: 1848-1853.
  • 52. KRISTJANSSON J.K., SCHONHEIT P., THAUER R.K., 1982 - Different Ks values for hydrogen of methanogenic bacteria and sulphate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulphate. Arch. Microbiol., 131: 278-282.
  • 53. KROUSE H.R., 1994 - Isotope tracing of pollutant sulphate in groundwater., In: Isotope Workshop II (International Isotope Society and University of Wrocław). Extended Abstracts (ed. M.O. Jędrysek): 69-73. Książ Castle.
  • 54. KROUSE H.R., GOULD W.D., MCCREADY R.G.L., RAJAN S., 1991 a - 18O incorporation into sulphate during the bacterial oxidation of sulphide minerals and the potential for oxygen isotope exchange between O2 and H2O and oxidized sulphur intermediates. Earth Planet. Sci. Lett., 107: 90-94.
  • 55. KROUSE H.R., STEWART J.W.B., GRINIENKO V.A., 1991 b - Pedosphere and Biosphere. In: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (eds. H.R. Krouse and V.A. Grinienko). SCOPE 43: 267-306. Wiley & Sons. Chichester.
  • 56. LLOYD R.M., 1968 - Oxygen isotope behaviour in the sul- phate-water system. J. Geophys. Res., 73: 6099-6110.
  • 57. LOJEN S., OGRINC N., DOLENEC T., 1997 - Carbon and nitrogen stable isotope fractionation in the sediment of Lake Bled (Slovenia). Water Air Soil Poll., 99: 315-323
  • 58. LOJEN S., OGRINC N., DOLENEC T., 1999 - Decomposition of sedimentary organic matter and methane formation in the recent sediment of Lake Bled (Slovenia). Chem. Geol, 159: 223-240
  • 59. LONGINELLI A., CORTECCI G., 1970 - Isotopic abundance of oxygen and sulfur in sulfate ions from river water. Earth Planet. Sci. Lett., 7: 376-380.
  • 60. LOVLEY D.R., KLUG M.J., 1986 - Model for the distribution of sulphate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta, 50: 11-18.
  • 61. LOVLEY D.R., DWYER D.F., KLUG M.J., 1982 - Kinetic analysis of competition between sulphate reducers and methanogens for hydrogen in sediments. Appl. Eviron. Microbiol., 43, 1373-1379.
  • 62. LUPTON F.S., ZEIKUS J.G., 1985 - Physiological basis for sulphate dependent H2 competition between sulfidogens and methanogens. Curr. Microbiol., 11: 7-12.
  • 63. MAREK D.W., ALI M.K, ERNEST A.N., 1996 - Aquatic sediments. Water Envir. Res., 68: 629-662.
  • 64. MARTENS C.S., BERNER R.A., 1974 - Methane production in the interstitial waters of sulphate-depleted marine sediments. Science, 185: 1167-1169.
  • 65. MARTENS C.S., BERNER R.A., 1977 - Interstitial water chemistry of Long Island Sound sediments. I. Dissolved gases. Limnol. Oceanogr., 22: 10-25.
  • 66. MAYER B., KROUSE H.R., FRITZ P., PRIETZEL J., REHFUESS K.E., 1993 - Evaluation of biogeochemical sulphur transformations in the forest soils by chemical and isotope data. IAHS Publication, 215: 65-72.
  • 67. MIYAJIMA T., WADA E., HANBA Y.T., VIJARNSORN P., 1997-Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. Cosmochim. Acta, 61: 3739-3751.
  • 68. MIZUTANIY., RAFTER T. A., 1973 - Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J., 6: 183-191.
  • 69. MONCASTER S.J., BOTTRELL S.H., TELLAM J.H., LLOYD J.W., KONHAUSER K.O., 2000 - Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. J. Contam. Hydrol., 43: 147-163.
  • 70. MYLONA S., 1996 - Sulphur dioxide emissions in Europe 1980-1991 and their effect on sulphur concentration and deposits. Tellus, 48 B: 662-689.
  • 71. NEDWELL D.B., BANAT I.M., 1981 - Hydrogen as an electron donor for sulphate-reducing bacteria in slurries of salt-marsh sediment. Microbiol. Ecolog., 7: 305-313.
  • 72. NEWMAN L., KROUSE H.R., GRINIENKO V.A., 1991 - Sulphur isotope variations in the atmosphere. In: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (eds: H.R. Krouse and V.A. Grinienko). SCOPE 43: 133-176. Wiley & Sons. Chichester.
  • 73. OLEKSYN J., REICH P. B., CHALUPKA W., TJOELKER M.G., 1999-Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scand. J. For. Res., 14: 7-17.
  • 74. OREMLAND R.S., POLCIN S., 1982 - Methanogenesis and sulphate reduction: Competitive and non competitive substrates in eustarine sediments. Appl. Environ. Microbiol., 44: 1270-1276.
  • 75. OREMLAND R.S., MARSH L.M., POLCIN S., 1982 - Methane production and stimultaneous sulphate reduction in anoxic saltmarsh sediments. Nature, 296: 143-145
  • 76. OREMLAND R.S., MILLER L.J., WHITICAR M.J., 1987 - Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim Acta, 51: 2915-2929.
  • 77. PANGANIBAN A.T., PATT T.E., HART W., HANSON R.S., 1979-Oxidation of methane in the absence of oxygen in lake water samples. Appl. Eviron. Microbiol., 37: 303-309.
  • 78. PARKERS R.J., GIBSON G.R., MUELLER-HARVEY I., BUCKINGHAM W. J., HERBERT R.A., 1989 - Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J. Gen. Microbiol., 135: 175-187.
  • 79. REEBURGH W.S., 1980 - Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett, 47: 345-352.
  • 80. REEBURGH W.S., ALPERIN M. J., 1988 - Studies on anaerobic methane oxidation. SCOPE/UNEP 66: 367-375.
  • 81. REEBURGH W.S., WHALEN S.C., ALPERIN M.J., 1993 - The role of methylotrophy in the global methane budget. In: Microbial Growth on C1 Compounds (eds. J. C. Murrel and D. P. Kelly): 1-14. Intercept. Andover.
  • 82. ROBINSON J.A., TIEDJE J.M., 1984 - Competition between sulphate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol., 137: 26-32.
  • 83. ROBINSON B.W., BOTTRELL S.H., 1997 - Discrimination of sulphur sources in pristine and polluted New Zealand river catchments using stable isotopes. Appl. Geochem., 12: 305-319.
  • 84. RÓŻAŃSKI K., ARAGUÁS-ARAGUÁS L., GONFIANTINI R., 1993 - Isotopic patterns in modern global precipitation. In: Climate change in Continental Isotopic Records (eds. P. K. Swart et al ). The American Geophysical Union., Geophys. Monogr., 78: 1-36.
  • 85. RUDD J.W., HAMILTON R.D., 1978 - Methane cycling in a eutrophic shield lake and its effect on whole lake metabolism. Limnol. Oceanogr., 23: 337-348.
  • 86. SCHONHEIT P., KRISTJANSSON J.K., THAUER R.K., 1982 - Kinetic mechanism for the ability of sulphate reducers to out-compete methanogens for acetate. Arch. Microbiol., 132: 285-288.
  • 87. SCHOLTEN J.C.M., van BODEGOM P.M., VOGELAAR J., van ITTERSUM A., HORDIJK K., ROELOFSEN W., STAMS A.J.M., 2002 - Effect of sulphate and nitrate on acetate conversion by anaerobic microorgansm in a freshwater sediment. FEMS Microbiol. Ecol, 42: 375-385.
  • 88. SCHALLP., 1991 -Productivity and vitality of spruce stands: dynamic feedback simulation for responses to different annual and seasonal levels of magnesium supply from soil. Vegetation, 92: 111-118.
  • 89. STANIASZEK P., 1992 - Stable isotope composition of dissolved sulphate and carbonate in selected natural systems. Ph.D. thesis. University of Calgary. Canada.
  • 90. STASKO S., 1994 - Groundwater age and source areas in Polish Sudetes base on 3H, 2H and 18O isotopes. In: Isotope Workshop II (International Isotope Society and University of Wrocław). Extended Abstracts (ed. M.O. Jędrysek): 69-73. Książ Castle.
  • 91. STEMPVOORT van D.R., KROUSE H.R., 1994 - Controls of 18O in sulfate: Review of experimental data and application to specific environments., In: Environmental Geochemistry of Sulfide Oxidation (eds. C. N. Alpers and D. W. Blowers). Am. Chem. Soc. Symp. Ser, 550: 446-480.
  • 92. TORANL., HARRIS R.F., 1989 - Interpretation of sulphur and oxygen isotopes in biological and abiological sulphide oxidation. Geochim. Cosmochim Acta, 53: 2341-2348.
  • 93. TREMBACZOWSKI A., 1990 - Sulphur and oxygen isotope fractionation as a result of bacterial mineral-forming processes in biogeochemical cycling., In: Course-book of Isotope Geology, Third School on Physics of Minerals, Part I - Isotopes (ed. M. O. Jędrysek): 117-135. University and Committee on Mineralogical Sciences. Wrocław.
  • 94. TREMBACZOWSKI A., 1991 - Sulphur and oxygen isotopes behaviour in sulphates of atmospheric-groundwater system: Observations and model. Nord. Hydrol., 22: 49-66.
  • 95. TREMBACZOWSKI A., 1994 a - Are the rivers the conveyor of sulphates only, or do they model the sulphates too? - Variations of sulphates along the river course. In: Isotope Workshop II (International Isotope Society and University of Wrocław). Extended Abstracts (ed. M.O. Jędrysek): 69-73. Książ Castle.
  • 96. TREMBACZOWSKI A., 1994 b - The relationship between sulphur and oxygen isotopes in sulphate. In: Isotope Workshop II (International Isotope Society and University of Wrocław). Extended Abstracts (ed. M.O. Jędrysek): 69-73. Książ Castle.
  • 97. TREMBACZOWSKI A., 1995 - An example of signifficant enrichment of sulphates dissolved in groundwaters in heavy isotopes of sulphur and oxygen [in Polish with English Abst.]. Prz. Geol., 43: 219-222.
  • 98. TREMBACZOWSKI A., HAŁAS S., 1993 - Sulphur and oxygen isotopes in sulphates in natural waters 1. Surface waters of relatively unpolluted terrains. Isotopenpraxis, 28: 215-228.
  • 99. WAKE L.V., CHRISTOPHER R.K., RICKARD A.D., ANDERSEN J.E., RALPH B.J., 1977 -A thermodynamic assessment of possible substrates for sulphate-reducing bacteria. Aust. J. Biol. Sci., 30: 115-172.
  • 100. WARD D. M., WINFREY M.R., 1985 - Interactions between methanogenic and sulphate reducing bacteria in sediments. Adv. Aquat. Microbiol., 3: 141-179.
  • 101. WESTERMANN P., 1993 - Temperature regulation of methanogenesis in wetlands. Chemosphere, 26: 321-328.
  • 102. WESTERMANN P., AHRING B.K., 1987 - Dynamics of methane production, sulphate reduction, and denitrification in a permanently waterlogged alder swamp. Appl. Environ. Microbiol., 53: 2554-2559.
  • 103. WHITICAR M.J., 1999 - Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161: 291-314.
  • 104. WINFREY M.R., ZEIKUS J.G., 1977 - The effect of sulphate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol., 33: 275-281.
  • 105. YANAGISHAWA F., SAKAI H., 1983 - Thermal decomposition of barium sulphate - vanadium pentaoxide - silica glass mixtures for preparation of sulphur dioxide in sulphur isotope ratio measurments. Anal. Chem., 55: 985-987.
  • 106. ZEHNDER A.J.B., 1978 - Ecology of methane formation. In: Water Pollution Microbiology (ed. R. Mitchel): 349-376. Wiley & Sons. New York.
  • 107. ZEHNDER A.J.B., BROCK T.D., 1979 - Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol., 137: 420-432.
  • 108. ZEHNDER A.J.B., BROCK T.D., 1980 - Anaerobic methane oxidation: occurrence and ecology. Appl. Env. Microbiol., 39: 194-204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0021-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.