PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ageing of organic matter in incubated freshwater sediments; in fer ences from C and H isotope ratios of methane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The freshwater sediments were incubated under anaerobic conditions for 570 and 879 days to in vestigate the potential variations in methanogenic pathways due to increasing sediment age and recalcitrance of organic matter. The methanogenic pathways did not shift from acetate fermentation toward CO2 reduction, as indicated by the observed variations of the isotopic composition of methane in natural conditions. It appeared, however, that the observed decrease of methane concentration (from 86 to 39%) and continuous in crease in d13C(CH4) (from –69.7 to –59.0‰) and dD(CH4) values (from –381 to –320‰) resulted mainly from exhaustion of at least one methanogenic substratein the incubated sediments. To better understand processes controlling the variations of delta exp.13C(CH4) and deltaD(CH4) values relative to ageing of organic matter, the method of principal component analysis (PCA) was used. This method offers good comparison of the relation ships between variables when a larger number of parameters control a given process in the same time period. In this study, the PCA indicated three distinctive factors that controlled decomposition of organic matter during the incubation. Factor 1 explained 33% of observed variations among the variables and had positive (0.93–0.92) loadings for electric conductivity and DIC concentration and negative loading for delta exp.13C(CH4) val ues (–0.72). Factor 2 accounted for 28% and had high posi ive loading for deltaD(CH4) value (0.86) and high negative loading for methane concentration (–0.81). Factor 3 accounted for 19% and exhibited high positive loadings for temperature (0.90) and delta exp.13C(DIC) value (0.69). Factors 1 and 2 were directly linked to the methanogenesis and indicated that bigger accumulation of bio-products in sediments is likely important for variations of delta exp.3C and deltaD of methane. This study shows that method of principal component analysis might be a useful tool while studying biogeochemical carboncy cleduring early digenesis of freshwater sediments.
Rocznik
Strony
383--383
Opis fizyczny
–396, bibliogr. 55 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, PL-50-205 Wrocław, Poland, aszynkie@in di ana.edu
Bibliografia
  • BISHOP P. K. (1990) - Precipitation of dissolved carbonate species from natural waters for d13C analysis - a critical appraisal. Chem. Geol., 80:251-259.
  • BLAIR N. (1998) - The d13C of biogenic methane in marine sediments: the influence of Corg deposition rate. Chem. Geol., 152: 139-150.
  • BURKE R. A. JR. (1993) - Possible influence of hydrogen concentration on microbial methane stable hydrogen isotopic composition. Chemisphere, 26: 55-67.
  • CATTELL R. B. (1966) - The scree test for the number of factors. Multivar. Behav. Res., 1: 245-276.
  • CHILD D. (1970) - The essentials of factor analysis. Holt, Rinehart and Winston, London.
  • CHIN K. J. and CONRAD R. (1995) - Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol., 18: 85-102.
  • CLARC I. and FRITZ P. (1997) - Environmental Isotopes in Hydrogeology. Lewis Publ. New York.
  • CONRAD R. (2005) - Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal. Org. Geochem., 36: 739-752.
  • DANNENBERG S., WUDLER J. and CONRAD R. (1997) - Agitation of anoxic paddy soil slurries affects the performance of the methanogenic microbial community. FEMS Microbial. Ecol., 22: 257-263.
  • DEMENY A. (1995) - H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples. Chem. Geol., 121: 19-25.
  • DREVER J. I. (1997) - The geochemistry of natural waters, surface and groundwater environments. Prentice Hall, Wyoming.
  • FETTER C. W. (1994) - Applied Hydrogeology. Macmillan, New York.
  • GAMES L. N., HAYES J. M. and GUNSALUS R. P. (1978) - Methane producing bacteria: natural fractionations of the stable carbon isotopes. Geochim. Cosmochim. Acta, 42: 1295-1297.
  • GELWICK J. T., RISSATI J. B. and HAYES J. M. (1994) - Carbon isotope effects associated with acetoclastic methanogenesis. Appl. Environ. Microbiol., 60: 467-472.
  • HORNIBROOK E. R. C., LONGSTAFFE F. J. and FYFE W. S. (1997) - Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim. Cosmochim. Acta, 61: 745-753.
  • HORNIBROOK E. R. C., LONGSTAFFE F. J. and FYFE W. S. (2000) - Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta, 64: 1013-1027.
  • JĘDRYSEK M. O. (1995) - Carbon isotope evidence for diurnal variations in methanogenesis in freshwater lake sediments. Geochim. Cosmochim. Acta, 59: 557-561.
  • JĘDRYSEK M. O. (1997a) - Ebullitive flux of early-diagenetic methane from recent freshwater sediments in Lake Nowa Cerekiew (SW Poland). Ann. Soc. Geol. Pol., 67 (4): 451-461.
  • JĘDRYSEK M. O. (1997b) - Spatial and temporal variations in carbon isotope ratio of early-diagenetic methane from freshwater sediments: methanogenic pathways. Acta Univ. Wratisl., Pr. Geol. Miner., 63.
  • JĘDRYSEK M. O. (1998) - Mechanism of vertical variations of 8 C(CH4) value in sediments. Proc. the 9th International Symposium on Water-Rock Interaction, New Zealand, 30.03-3.04.1998: 325-328.
  • JĘDRYSEK M. O. (1999) - Spatial and temporal patterns in diurnal variations of carbon isotope ratios of early-diagenetic methane from freshwater sediments. Chem. Geol., 159 (1-4): 241-262.
  • JĘDRYSEK M. O. (2005) - Depth of the water column in relation to carbon isotope ratios in methane in freshwater sediments. Geol. Quart., 49 (2): 151-164.
  • JĘDRYSEK M. O., HAŁAS S., WADA E., BOONPRAKUP S., UEDA S., VIJARSORN P. and TAKAI Y. (1997) - Early-diagenetic methane from various tropical freshwater sediments: molecular and carbon isotope variations in one dial cycle. Ann. Soc. Geol. Pol., 67(1): 93-101.
  • JOHNSON R. J. (1978) - Multivariate Statistical Analysis in Geography. Longmans, London.
  • KRZYCKI J. A., KENEALY W. R., DENIRO M. J. and ZEIKUS J. G. (1987) - Stable isotope carbon fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol or carbon dioxide hydrogen. Appl. Environ. Microbiol., 53: 2597-2599.
  • LOJEN S., OGRINC N. and DOLONEC T. (1999) - Decomposition of sedimentary organic matter and methane formation in recent sediment of Lake Bled (Slovenia). Chem. Geol., 159: 223-240.
  • LOVLEYD. R. and KLUGM. J. (1982) -Intermediary metabolismof organic matter in the sediments of eutrophic lake. Appl. Environ. Microbiol., 43: 552-560.
  • LOVLEY D. R. and KLUG M. J. (1983) - Sulphate reducers can outcompete methanogens at freshwater sulphate concentration. Appl. Environ. Microbiol., 45: 187-192.
  • MANLY B. F. J. (1998) - Multivariate Statistical Methods. Capman and Hall, New York.
  • MARTENS C. S., BLAIR N. A., GREEN C. D. and DES MARAIS D. J. (1986) - Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment. Science, 233: 1300-1303.
  • McCREA J. M. (1950) - The isotopic chemistry of carbonates and paleotemperature scale. J. Chem. Phys., 18: 849-857.
  • MIYAJIMAT., WADA E., HANBA Y. T. and VIJARNSORN P. (1997) - Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. Cosmochim. Acta, 61:3739-3751.
  • NÜSSLEIN B., CHIN K. J., ECKERT W. and CONRAD R. (2001) - Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinnert (Israel). Environ. Microbiol., 3: 460-470.
  • NÜSSLEIN B., ECKERT W. and CONRAD R. (2003) - Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinnert (Israel). Limnol. Oceanogr., 48: 1439-1446.
  • QUAY P. D., KING S. L., STURSMAN J., WILBUR D. O., STEELE L. P., FUNG I., GAMMON R. H., BROWN T. A., FARWEL G. W., GROOTES P.M. and SCHMIDT F. H. (1991) - Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strengths. Global Biogeochem. Cycles, 5: 25-47.
  • PHELPS T. J. and ZEIKUS J. G. (1984) - Influence of pH on terminal carbon metabolism in anoxic sediments from a midly acidic lake. Appl. Environ. Microbiol., 48: 1088-1095.
  • SCHOELLM. (1980) - The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta, 44: 649-661.
  • SCHÜTZ H., SEILER W. and CONRAD R. (1990) - Influence of soil temperature on methane emission from rice paddy fields. Biogeochem., 11: 77-95.
  • SHAPIRO S. S., WILK M. B. and CHEN H. J. (1968) - A comparative study of various tests of normality. J. Am. Statistic. Ass., 63: 1343-1372.
  • SUGIMOTO A. and WADA E. (1993) - Carbon isotopic composition of bacterial methane in a soil incubation experiment: contribution of acetate and CO2/H2. Geochim. Cosmochim. Acta, 57: 4015-4027.
  • SWENSON B. H. (1984) - Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 48: 389-394.
  • SZYNKIEWICZ A. (2003) - Production and decomposition of methane in the incubated freshwater sediments: C-O-S isotope analysis. Ph. D. Thesis. Univ. Wrocław, Poland.
  • SZYNKIEWICZ A., JĘDRYSEK M. O. and KURASIEWICZ M. (2006) - Carbon isotope effects during precipitation of barium carbonate from a natural water solution with pH between 10 and 12: implications for environmental studies. Environ. Chem. Lett., 4: 29-35.
  • SZYNKIEWICZ A., JĘDRYSEK M. O., KURASIEWICZ M. and MASTALERZ M. (2008) - Influence of sulfate input on freshwater sediments: insights from incubation experiments. Appl. Geochem., 23: 1607-1622.
  • TAKAI Y. (1970) - The mechanism of methane fermentation in floaded paddy soil. Soil Sc. Plant Nutrition, 16: 238-244.
  • WAHLEN M., TANAKAN., HENRY R., DECK B., ZEGLEN J., VOGEL J. S., SOUTHON J., SHEMESH A., FAIRBANKS R. and BROECKER W. (1989) - Carbon-14 in methane sources and in atmospheric sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286-290.
  • WALDRON S., FALLICK A. and HALL A. (1998) - Comments on "Spatial distribution of microbial methane production pathways in temperate zone wetland soil: stable carbon and hydrogen evidence" by E. R. C. Hornibrook, F. J. Longstaffe and W. S. Fyfe. Geochim. Cosmochim. Acta, 62: 369-372.
  • WESTERMANN P. (1993) - Temperature regulation of methanogenesis in wetlands. Chemosphere, 26: 321-328.
  • WHITICAR M. J. (1999) - Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161: 291-314.
  • WHITICAR M. J. and FABER E. (1986) - Methane oxidation in sediment and water column environments - isotope evidence. Rg. Geochem., 10: 759-768.
  • WHITICAR M. J., FABER E. and SCHOELLM. (1986) - Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - Isotope evidence. Geochim. Cosmochim. Acta, 50: 693-709.
  • WINFREY M. R. and ZEIKUS J. G. (1979a) - Anaerobic metabolism of immediate methane precursors in Lake Mendota. App. Environ. Microbiol., 37: 244-253.
  • WINFREY M. R. and ZEIKUS J. G. (1979b) -Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. Environ. Microbiol., 37: 213-221.
  • WOLTEMATE I., WHITICAR M. J. and SCHOELL M. (1984) - Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake. Limnol. Oceanogr., 29: 985-992.
  • ZAISS U. (1981) - Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar. Zentralblatt fur Bacteriologie, Microbiologie und Hygiene, Abteilung 1, Originale C 2: 76-89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS6-0018-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.