PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wetting properties of solid mineral samples (by contact angles) in original surfactant-containing sea water (Gulf of Gdańsk, Baltic) were characterised under laboratory conditions on a large set (31 samples) of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach), captive bubble and inclined plate methods. An experimental relation between the static contact angle θ_eq and stone density ρ was obtained in the form θ_eq = B-ρ+ C, where B = 12.23 š 0.92, C = - (19.17 š 0.77), and r2 = 0.92. The histogram of ?eq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature) have contact angles θ_eq = 7.2, 10.7, 15.7 and 19.2^(o), which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γ_LV it also enabled the advancing θ_A and receding θ_R contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ(=θ_A - θ_R) with surfactant-containing sea water and distilled water (reference) on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2), solid surface free energy ??S (-17.03 to -23.61 mJ m-2) and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2) to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great importance in numerous technological processes including froth flotation, demulgation, anti-foaming procedures and the coal industries. It is believed that the approach presented here and the examples of its application to common sea water/solid mineral systems could be successfully adapted to optimise several surfactant-mediated adsorption processes (see below) of practical value in natural water ecology.
Czasopismo
Rocznik
Strony
377--403
Opis fizyczny
bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, PL-80-952 Gdańsk, Poland, fizsp@ug.edu.pl
Bibliografia
  • 1.Adamson A.W.,Gast A.P., 1997, Physical chemistry of surfaces,6 th edn., Wiley & Sons,N ew York,784 pp.
  • 2.Afsar-Siddiqui A. B.,Luckham P.F., Matar O.K.,2003, The spreading of surfactant solutions on thin liquid films,A dv. Colloid Interfac.,106 (1),183-236.
  • 3.Amirfazli A., Neumann A.W.,2004, Status of the three-phase line tension,Adv . Colloid Interfac.,110 (3), 121-141.
  • 4.Chibowski E., 2003, Surface free energy of a solid from contact angle hysteresis, Adv. Colloid Interfac.,103 (2),149-172.
  • 5.Chibowski E., Terpilowski K., 2008, Surface free energy of sulfur - Revisited: I. Yellowan d orange samples solidified against glass surface,J. Colloid Interf. Sci.,319 (2), 505-513.
  • 6.Churaev N.V., Sobolev V.D., 1995, Prediction of contact angles on the basis of the Frumkin-Derjaguin approach, Adv. Colloid Interfac.,61,1-16.
  • 7.Decker E. L., Frank B.,S uo Y., Garoff S., 1999, Physics of contact angle measurement,C olloid. Surface. A, 156 (1-3), 177-189.
  • 8.Drelich J., Miller J.D., Good R. J.,1996, The effect of drop (bubble) on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,J. Colloid Interf. Sci., 179 (1),37-50.
  • 9.Erbil H.Y., McHale G., Rowan S.M., Newton M. I.,1999, Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation, Langmuir,15 (21), 7378-7385.
  • 10.Extrand Ch.W., Kumagi Y., 1995, Liquid drops on an inclined plate: the relation between contact angles, drop shape, and retentive force,J. Colloid Interf. Sci., 170 (2),515-521.
  • 11.Gence N., 2006, Wetting behavior of magnesite and dolomite surfaces,Appl. Surf. Sci.,252 (10),3744-3750.
  • 12.Gennes de P.G., 1985, Wetting: statics and dynamics,Rev. Mod. Phys., 57 (3), 827-834.
  • 13.Gentien P., Lunven M., Lehaitre M., Dunvent J. L.,1995, In-situ depth profiling of particle sizes,D eep-Sea Res. Pt. I,42 (8), 1297-1312.
  • 14.Gindl M., Sinn G., Gindl W., Reiterer A., Tschegg S.,2001, A comparison of different methods to calculate the surface free energy of wood using contact angle measurements, Colloid. Surface. A,181 (1),279-287.
  • 15.Gokhale S. J., Plawsky J.L., Wayner P.C. Jr.,2005, Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops,Lan gmuir, 21 (18), 8188-8197.
  • 16.Grundke K., Bogumil T., Werner C.,Janke A.,Pöschel K.,Jacobasch H.-J., 1996, Liquid-fluid contact angle measurements on hydrophilic cellulosic materials, Colloid. Surface. A,116 (1-2), 79-87.
  • 17.Hörvolgyi Z., Mate M., Daniel A., Szalma J., 1999, Wetting behaviour of silanized glass microspheres at water-air interfaces: a Wilhelmy film balance study, Colloid. Surface. A,156 (1),501-508.
  • 18.Hunter K.A., Liss P. S.,1981, Organic sea surface films,[in:] Marine organic chemistry,E. K. Duursma & R. Dawson (eds),El sevier, New York, 259-298.
  • 19.Israelachvili J.,1992, Intermolecular and surface forces,2 nd edn., Acad. Press, San Diego,450 pp.
  • 20.Johnson B.D., Wangersky P. J., 1987, Microbubbles: Stabilization by monolayers of adsorbed particles, J. Geophys. Res.,92 (C13),14 641-14 647.
  • 21.Karagüzel C., Can M. F., Sönmez E., Çelik M. S.,2005, Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method, J. Colloid Interf. Sci.,285 (1),192-200.
  • 22.Lam C.N.C., Wu R., Li D., Hair M. L., Neumann A.W.,2002, Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis,A dv. Colloid Interfac., 96 (1),169-191.
  • 23.Li D.,1996, Drop size dependence of contact angles and line tensions of solid-liquid systems,C olloid. Surface. A, 116 (1-2),1-23.
  • 24.Lucassen J.,1992, Dynamic dilational properties of composite surfaces,Co lloid. Surface.,65 (2-3),139-149.
  • 25.Mohammed-Ziegler I., Oszlanczi A., Somfai B., Horvölgyi Z., Paszli I., Holmgren A., Forsling W., 2004, Surface free energy of natural and surface-modified tropical and European wood species, J. Adhes. Sci. Technol.,18 (6),687-713.
  • 26.Paria S., Khilar K.,2004, A reviewon experimental studies of surfactant adsorption at the hydrophilic solid-water interface,A dv. Colloid Interfac., 110 (3),75-95.
  • 27.Prokop R.M., Jyoti A., Eslamian M., Garg A., Michaila M.,del Rio O. I., Susnar S. S., Policova Z., Neumann A.W.,1998, A study of captive bubbles with axisymmetric drop shape analysis,C olloid. Surface. A, 131 (1), 231-242.
  • 28.Radelczuk H., Hołysz L., Chibowski E.,2002, Comparison of the Lifshits-Van der Waals/acid base and contact angle hysteresis approaches to determination of the solid surface free energy, J. Adhes. Sci. Technol.,16 (12),1547-1568.
  • 29.Rodrıgues-Valverde M. A., Cabrerizo-Vılches M.A., Rosales-López P., Páez-Duñeas A., Hidalgo-Álvarez R.,2002, Contact angle measurements on two (wood and stone) non-ideal surfaces,C olloid. Surface. A, 206 (1-3), 485-495.
  • 30.Sakorafa V., Michailidis K., Burragat o F., 1996, Mineralogy, geochemistry and physical properties of fly ash from the Megalopolis lignite fields, Peloponnese, Southern Greece,F uel,75 (4), 419-423.
  • 31.Starov V.M., Kostvintsev S.R., Sobolev V.D.,Velarde M.G., Zhdanov S.A., 2000, Spreading of liquid drops over dry porous layers: complete wetting case, J. Colloid Interf. Sci.,252 (2), 397-408.
  • 32.Tavana H., Lam C.N.C., Grundke K., Friedel P., Kwok D. Y., Hair M. L., 2004, Contact angle measurements with liquids consisting of bulky molecules, J. Colloid Interf. Sci.,279 (2), 493-502.
  • 33.Toscioglu C., Goodell B., Lopez-Anido R., Gardner D., 2004, Surface energy characterization of preservative-treated wood and E-glass/phenolic composites, Forest Prod. J.,54, 262-268.
  • 34.Ulman A.,1991, Ultrathin organic films,Acad. Press, New York,442 pp.
  • 35.Van Oss C. J., Chaudhurry M. K.,Good R. J.,1988, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems,C hem. Rev.,88 (6),927-936.
  • 36.Wenzel R.N.,1936, Resistance of solid surfaces to wetting by water,Ind. Eng. Chem.,28 (8),988-994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.