PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mercury fluxes through the sediment water interface and bioavailability of mercury in southern Baltic Sea sediments

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sediment cores collected in several areas of the southern Baltic were analysed for total mercury (HgTOT) and five operationally defined mercury fractions: HgA - contained in pore waters, HgF - bound to fulvic acids, HgH - bound to humic acids, HgS - bound to sulphide, and HgR - residual. An effort was made to quantify mercury fluxes at the sediment/water interface in the study area. Net mercury input, calculated on the basis of sedimentation rate and concentration in the uppermost sediments, ranged from 1 to 5.5 ng cm-2 year-1. Mercury remobilisation from sediments due to diffusion and resuspension was calculated from the proportion of labile mercury and the velocity of near-bottom currents. The results showed that the return soluble and particulate fluxes of mercury from the sediments to the water column constitute a substantial proportion of the input (20-50%), and are slightly higher than those found in pristine areas, although they are less than the values recorded in areas with a history of mercury contamination. In addition, an index was developed to assess the methylation potential of mercury in sediments. Mercury contained in pore waters, and mercury bound to fulvic and humic acids together with Loss on Ignition were used to calculate the semi-quantitative methylation potential (Pm). Despite the simplicity of this approach, Pm correlates well with methyl mercury in fish from the study area.
Czasopismo
Rocznik
Strony
263--285
Opis fizyczny
bibliogr. 52 poz., tab., wykr.
Twórcy
autor
  • Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland;, hyron@iopan.gda.pl
Bibliografia
  • 1.Beeckman J.W., 1990, Mathematical description of heterogeneous materials, Chem. Eng. Sci., 45 (8), 2603-2610.
  • 2.Bełdowski J., 2004, Uwarunkowania oraz znaczenie stężeń i specjacji rtęci w osadach dennych zachodniej części Basenu Gdańskiego, Ph.D. thesis, Dept. Biol. Geogr. Oceanogr., UG, Gdańsk, 164 pp.
  • 3.Bełdowski J., Pempkowiak J., 2003, Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdańsk Basin, Southern Baltic Sea, Chemosphere, 52 (3), 645-654.
  • 4.Bełdowski J., Pempkowiak J., 2007, Mercury concentration and speciation changes along source/sink transport pathway (Southern Baltic), Estuar. Coast. Shelf Sci., 72 (1-2), 370-378.
  • 5.Bełdowski J., Pempkowiak J., 2008, Mercury concentration and solid phase speciation changes in the course of early diagenesis in marine coastal sediments (Southern Baltic Sea), Mar. Freshwater Res., (in press).
  • 6.Benoit J.M., Gilmour C.C., Mason R.P., Heyes A., 1999, Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters, Environ. Sci. Technol., 33 (6), 951-957.
  • 7.BHMW(Biuro Hydrograficzne Marynarki Wojennej), 2001, Locja Bałtyku No. 502, Hydrographical Office of the Polish Navy, Gdynia, 180 pp.
  • 8.Boening D.W., 2000, Ecological effects, transport, and fate of mercury: a general review, Chemosphere, 40 (12), 1335-1351.
  • 9.Borg H., Jonsson P., 1996, Large-scale metal distribution in Baltic Sea sediments, Mar. Pollut. Bull., 32 (1), 8-21 .
  • 10.Boszke L., Głosińska G., Siepak J., 2002, Some aspects of speciation of mercury in a water enviroment, Pol. J. Environ. Stud., 11 (4), 285-298.
  • 11.Boszke L., Siepak J., Falandysz J., 2003, Total mercury contamination of selected organisms in Puck Bay, Baltic Sea, Poland, Pol. J. Environ. Stud., 12 (3), 275-285.
  • 12.Bothner M.H., Jahnke R.A., Peterson M. L., Carpenter R., 1980, Rate of mercury loss from contaminated estuarine sediments, Geochim. Cosmochim. Ac., 44 (2), 273-285.
  • 13.Boudreau B.P., 1997, Diagenetic models and their implementation: Modelling transport and reactions in aquatic sediments, Springer-Verlag, Heidelberg, 414 pp.
  • 14.Christiansen C., Edelvang K., Emeis K., Graf G., Jahmlich S., Kozuch J., Laima M., Leipe T., Loffler A., Lund-Hasen L.C., Miltner A., Pazdro K., Pempkowiak J., Shimmield G., Shimmield T., Smith J., Voss M., Witt G., 2002, Material transport from the near shore to the basinal environment in the Southern Baltic Sea: I. Processes and mass estimates, J. Marine Syst., 35 (3-4), 133-150.
  • 15.Ciesielski T., Szefer P., Bertenyi Zs., Kuklik I., Ska K., Namieśnik J., Fodor P., 2006, Interspecific distribution and co-associations of chemical elements in the liver tissue of marine mammals from the Polish Economical Exclusive Zone, Baltic Sea, Environ. Int., 32 (4), 524-532.
  • 16.Compeau G., Bartha R., 1985, Sulfate reducing bacteria: Principal methylators of mercury in anoxic estuarine sediments, Appl. Environ. Microb., 50 (2), 498-502.
  • 17.Cossa D., Gobeil C., 2000, Mercury speciation in the Lower St. Lawrence Estuary, Can. J. Fish. Aquat. Sci., 57 (S1), 138-147.
  • 18.Covelli S., Faganeli J., Horvat M., Brambati A., 1999, Porewater distribution and benthic flux measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea), Estuar. Coast. Shelf Sci., 48 (4), 415-428.
  • 19.Emelyanov E.M., 1995, Baltic Sea: Geology, geochemistry, paleo-oceanography, pollution, Acad. Nat. Sci., RF, Kaliningrad, 119 pp.
  • 20.Falandysz J., Chwir A., Wyrzykowska B., 2000, Total mercury contamination of some fish species in the firth of Vistula and the lower Vistula River, Poland, Pol. J. Environ. Stud., 9 (4), 335-339.
  • 21.Fant M. L., Nyman M., Helle E., Rudback E., 2001, Mercury, cadmium, lead and selenium in ringed seals (Phoca hispida) from the Baltic Sea and from Svalbard, Environ. Pollut., 111 (3), 493-501.
  • 22.Forstner U., Wittmann G., 1981, Metal pollution in the aquatic environment, Springer, Berlin, 485 pp.
  • 23.Gagnon C., Pelletier E., Macci A., 1997, Behaviour of anthropogenic mercury in coastal marine sediments, Mar. Chem., 59 (1-2), 159-176.
  • 24.Gobeil C., Cossa D., 1993, Mercury in sediments and sediments pore water in the Laurentian Trough, Can. J. Fish. Aquat. Sci., 50 (8), 1794-1800.
  • 25.HELCOM (Helsinki Commission), 2003, Hazardous substances, [in:] The Baltic marine environment 1999-2002, BSE Proc. No. 87, 24-43.
  • 26.IOW (Institut für Ostseeforschung Warnemィunde), 2008, Meereswissenschaftliche Berichte/Marine Science Reports No. 72, http://www.io-warnemuende.de /tl files/forschung/meereswissenschaftliche-berichte/mebe72 2007 -zu/ stand -hc-und-schwermetalle.pdf.
  • 27.Jackson T.A., 1998, Mercury in aquatic ecosystems, [in:] Metal metabolism in the aquatic environment, J. Langston & M. J. Bebiano (eds.), Chapman & Hall, London, 178-249.
  • 28.Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44 (4), 395-418.
  • 29.Jensen S., Jernelöv A., 1969, Biological methylation of mercury in aquatic organisms, Nature, 223 (5207), 753-754.
  • 30.Kim E.H., Mason R.P., Porter E.T., Soulen H. L., 2004, The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study, Mar. Chem., 86 (3-4), 121-137.
  • 31.Korzeniewski K. (ed.), 1993, Zatoka Pucka, UG, Gdańsk, 259-262.
  • 32.Laurier F. J.G., Cossa D., Gonzalez J.L., Breviere E., Sarazin G., 2003, Mercury transformations and exchanges in a high turbidity estuary: The role of organic matter and amorphous oxyhydroxides, Geochim. Cosmochim. Ac., 67 (18), 3329-3345.
  • 33.Lick W. J., 2008, Approximate equations for erosion rates, [in:] Sediment and contaminant transport in surface waters, CRC Press, Boca Raton, London, NewY ork, 90-92.
  • 34.Lund-Hansen L. C., Valeur J., Pejrup M., Jensen A., 1997, Sediment fluxes, resuspension and accumulation rates at two wind-exposed coastal sites and in a sheltered bay, Estuar. Coast. Shelf Sci., 44 (5), 521-531.
  • 35.Millat J., 2008, Projekt dla elektrowni opartej na węglu kamiennym w Greifswaldzie. Możliwe oddziaływanie na środowisko naturalne będące skutkiem emisji rtęci i jej związków, http://bipgdos.mos.gov.pl/doc/2009/Greifswalder 2009/spis tresci segregator/segregator 3 4 %20zalacznik/Aneks II/zalacznik 16 Możliwe oddzialywanie na srodowisko naturalne bedace skutkiem.pdf.
  • 36.Pempkowiak J., 1991, Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210Pb and 137Cs, Environ. Int., 17 (5), 421-428.
  • 37.Pempkowiak J., 1994, Zmiany potencjału oksydacyjno-redukcyjnego, pH oraz stężenia węgla organicznego w osadach wewnętrznej Zatoki Puckiej, lipiec-październik 1988 rok, [in:] Zatoka Pucka. Możliwości rewaloryzacji, L. Kruk Dowgiałło & P. Ciszewski (eds.), Inst. Ochr. Środ., Warszawa, 53-64.
  • 38.Pempkowiak J., Bełdowski J., Pazdro K., Staniszewski A., Leipe T., Emeis K.E., 2002, The contribution of the fine sediment fraction to the Fluffy Layer Suspended Matter (FLSM), Oceanologia, 44 (4), 513-527.
  • 39.Pempkowiak J., Cossa D., Sikora A., Sanjuan J., 1998, Mercury in water and sediments of the southern Baltic Sea, Sci. Total Environ., 213 (1-3), 185-192.
  • 40.Pempkowiak J., Tylmann W., Staniszewski A., Golebiewski R., 2006, Lignin depolymerization products as biomarkers of the organic matter sedimentary record in 210Pb-137Cs-dated lake sediments, Org. Geochem., 37 (11), 1452 -1464.
  • 41.Pruszak Z., 1998, Dynamika brzegu i dna morskiego, IBW PAN, Gdańsk, 393-418.
  • 42.Robbins J.A., 1978, Geochemical and geophysical application of radioactive lead, [in:] The biogeochemistry of lead in the environment, J.O. Nriagu (ed.), Elsevier, Amsterdam, 285-393.
  • 43.SFI (Sea Fisheries Institute in Gdynia), 2008, Cruise Report r/vB altica, http://www.mir.gdynia.pl/no/docuents/baltica short cruise report 11 2008.pdf.
  • 44.Siebert U., Joiris C., Holsbeek L., Benke H., Failing K., Frese K., Petzinger E., 1999, Potential relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic Seas, Mar. Pollut. Bull., 38 (4), 285-295.
  • 45.Sternbeck J., Sohlenius G., 1997, Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea, Chem. Geol., 135 (1-2), 55-73.
  • 46.Ullman W. J., Aller R.C., 1982, Diffusion coefficients in nearshore marine sediments, Limnol. Oceanogr., 27 (3), 552-556.
  • 47.US EPA (US Environmental Protection Agency), 2002, Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, US Environ. Prot. Agency, Office of Water 4303, EPA-821-R-02-019, 46 pp.
  • 48.Voigt H.R., 2004, Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes, Environment. Fennica, 21, http://ethesis.helsinki.fi/julkaisut/bio/bioja/vk/voigt/concentr.pdf.
  • 49.Wallschläger D., Desai M.V.M., Spengler M., Wilken R.-D., 1998a, Mercury speciation in floodplain soils and sediments along a contaminated river transect, J. Environ. Qual., 27 (5), 1034-1044.
  • 50.Wallschläager D., Desai M.V.M., Spengler M., Windmöller C.C., Wilken R. D., 1998b, How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments, J. Environ. Qual., 27 (5), 1044-1054.
  • 51.Wallschläger D., Desai M.V.M., Wilken R.-D., 1996, The role of humic substances in the aqueous mobilisation of mercury from contaminated floodplain soils, Water Air Soil Poll., 90 (3-4), 507-520.
  • 52.WHO (World Health Organisation), 1987, Review of potentially harmful substances: arsenic, mercury and selenium, WHO Rep. Stud., 28, 74-133.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.