PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the modelling of egg production in Acartia spp. under changing environmental conditions in the southern Baltic Sea (Gdańsk Deep). The hypothesis (Sekiguchi et al. 1980) that the food-saturated rate of egg matter production is equivalent to specific growth rate of copepods is applied. The average number of eggs produced per day by one Acartia female is obtained as a function of growth rate, i.e. by multiplying exp gN3-1 from the growth rate of the nauplius stage equation by Wfemale / Wegg. The copepod model, reduced to a zero-dimensional population model calibrated for Acartia spp. under the environmental conditions typical of the southern Baltic Sea, was used to determine the effects of temperature and food concentration on the growth rate of each of the model stages (see Part 1 - Dzierzbicka-Głowacka et al. 2009 - this issue). In this part, egg production as a function of the above parameters is evaluated. The rate of reproduction during the seasons in the upper layer of the Gdańsk Deep is also determined.
Czasopismo
Rocznik
Strony
185--201
Opis fizyczny
bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
Bibliografia
  • 1.Ambler J. W., 1985, Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana,fr om East Lagoon, Galveston, Texas, Estuar. Coast. ShelfS ci., 20 (6), 743-760.
  • 2.Bautista B., Harris R.P., Rodriguez V. et al, 1994, Temporal variability in copepod fecundity during two different spring bloom periods in coastal waters off Plymouth (SW England), J. Plankton Res., 16 (10), 1367-1377.
  • 3.Beckman B.C., Peterson W.T., 1986, Egg production of Acartia tonsa Dana in Long Island Sound, J. Plankton Res., 8 (5), 917-925.
  • 4.Berggreen U., Hansen B., Kiörboe T., 1988, Food size spectra,in gestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production, Mar. Biol., 99 (3), 341-352.
  • 5.Checkley D.M., 1980, Food limitation of egg production by a marine planktonic copepod in the sea off southern California, Limnol. Oceanogr., 25, 991-998.
  • 6.Ciszewski P., Witek Z., 1977, Production of older stages of copepods Acartia bifilosa Giesb. and Pseudocalanus elongatus Boeck in Gdańsk Bay, Pol. Arch. Hydrobiol., 24, 449-459.
  • 7.Corkett C. J., McLaren I.A., 1978, The biology of Pseudocalanus, Adv. Mar. Biol., 15, 1-231.
  • 8.Durbin E.G., Durbin A.G., Smayda T. J. et al., 1983, Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr., 28, 1199-1213.
  • 9.Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf, J. Marine Syst., 53 (1-4), 19-36.
  • 10.Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
  • 11.Dzierzbicka-Głowacka L., 2005c, Equivalence of rates of growth and egg production of Pseudocalanus, Ocean Hydrobiol. Stud., 34 (4), 19-32.
  • 12.Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
  • 13.Dzierzbicka-Głowacka L., Lemieszek A., Żmijewska M.A., 2009, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time, Oceanologia, 51 (2), 165-184.
  • 14.Fennel W., 2001, Modelling of copepods with links to circulation model, J. Plankton Res., 23 (11), 1217-1232.
  • 15.Fryd M., Haslund O.H., Wohlgemuth O., 1991, Development,gr owth and egg production of two copepod species Centropages hamatus and Centropages typicus in the laboratory, J. Plankton Res., 13, 683-689.
  • 16.Harrison K.E., 1990, The role of nutrition in maturation,r eproduction and embryonic development of decapod crustaceans: a review, J. Shellfish Res., 9, 1-28.
  • 17.Hay S. J., 1995, Egg production and secondary production of common North Sea copepods: field estimates with regional and seasonal comparisons, ICES J.Mar. Sci., 52, 315-327.
  • 18.Hernroth L., 1985, Recommendations on methods for marine biological studies in the Baltic Sea, Mesozooplankton biomass assessment, Baltic Mar. Biolog., 10, 1-32.
  • 19.Kiorboe T., Johansen K., 1986, Studies of a larval herring (Clupea harengus L.) patch in the Buchan area,I V. Zooplankton distribution and productivity in relation to hydrographic features, Dana, 6, 37-51.
  • 20.Kiorboe T., Mohlenberg F., Hamburger K., 1985, Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding,e gg production and respiration,an d composition of specific dynamic action, Mar. Ecol.-Prog. Ser., 26, 85-97.
  • 21.Kleppel G. S., 1992, Environmental regulation of feeding and egg production by Acartia tonsa off southern California, Mar. Biol., 112, 57-65.
  • 22.McLaren I.A., Leonard A., 1995, Assessing the equivalence of growth and egg production of copepods, ICES J. Mar. Sci., 52, doi:10.1016/1054-3139(95)80054-9, 397-408.
  • 23.Mudrak S., 2004, Short- and long-term variability of zooplankton in coastal Baltic water: using the Gulf of Gdańsk as an example, Ph. D. thesis, Univ. Gdańsk, Gdynia, (in Polish).
  • 24.Paffenhöfer G.A., Harris R.P., 1976, Feeding,gr owth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck, J. Mar. Biol.Assoc. UK, 56, 327-344.
  • 25.Pond D., Harris R., Head R. et al., 1996, Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth, UK Mar. Ecol.-Prog. Ser., 143, 45-63.
  • 26.Renk H., 2000, Primary production in the southern Baltic, Sea Fisher. Inst., Gdynia, 78 pp., (in Polish).
  • 27.Schmidt K., Kähler P., Bodungen B., 1998, Copepod egg production rates in the Pomerania Bay (southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition, Mar. Ecol.-Prog. Ser., 174, 183-195.
  • 28.Sekiguchi H., McLaren I.A., Corkett C. J., 1980, Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonica, Mar. Biol., 58 (2), 133-138.
  • 29.Stegert Ch., Kreus M., Carlotii F., Moll A., 2007, Parameterisation of a zooplankton population model for Pseudocalanus elongatus using stage durations from laboratory experiments, Ecol. Model., 206 (3-4), 214-234.
  • 30.Uye S., Shibuno N., 1992, Reproductive biology of the planktonic copepod Paracalanus sp. in the Inland Sea of Japan, J. Plankton Res., 14, 343-359.
  • 31.Vanderploeg H. A., Paffenhöfer G.A., Liebig J.R., 1988, Diaptomus vs net phytoplankton: effects of algae size and morphology on selectivity of a behaviorally flexible,om nivorous copepod, Bull. Mar. Sci., 43, 377-394.
  • 32.Verity P.G., Smayda T. J., 1989, Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): ingestion,e gg production, and growth of nauplii, Mar. Biol., 100 (2), 161-171.
  • 33.Vinogradov M. E., Shushkina E.A., 1987, Functioning of pelagic plankton communities in the ocean, Nauka, Moskva, (in Russian).
  • 34.White J.R., Roman M.R., 1992, Egg production by the calanoid copepod Acartia tonsa in the mesohaline Chesapeake Bay: the importance of food resources and temperature, Mar. Ecol.-Prog Ser., 86, 239-249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.