PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Desmuramylopeptydy - struktura i aktywność biologiczna

Identyfikatory
Warianty tytułu
EN
Desmuramylpeptide - structure and biological activity
Języki publikacji
PL
Abstrakty
EN
Bacterial cell wall peptidoglycan (PGN) is a potent immunostimulator and immune adjuvant. Numerous studies reported on immunoactivities of bacterial PGN, most of which have been reproduced by a chemically synthesized low-molecular PGN fragment, muramyldipeptide (MDP) 1 (Fig. 1) [2, 4, 5, 7, 8, 10, 13]. Another type of PGN fragment, desmuramylpeptides (DMPs), has also been chemically synthesized to mimic PGN containing meso-DAP, and the DMPs exerted similar bioactivities to MDP. In 1984 [18] reported that y-D-Glu-meso-DAP was the minimum structural unit capable of eliciting bioactivities induced by DMPs. Recently demonstrated that intracellular protein carrying a nucleotidebinding oligomerization domain (NOD), NOD2 an intracellular receptor for MDP and DMPs containing DAP was recognized by another NOD protein, NOD1 [8, 33]. Replacement of the N-acetylmuramyl moiety with various acyl groups thus represents an important approach to the design and synthesis of new immunologically active MDP analogues – desmuramylpeptides, e.g. FK-156 9, pimelautide 11 (Fig. 2), 7-(oxoacyl)-L-alanyl-D-isoglutamines, carbocyclic MDP analogues (Fig. 13) [3, 13] in which a more lipophilic cyclohexane ring is present instead of the polyhydroxy pyranose ring of D-glucosamine, and the adamantyl-substituted MDP analogue LK-415 (Fig. 8) [54]. The FK-156 isolated from Streptomyces olivaceogriseus [21, 22] and its synthetic analogue of FK-565 10 (Fig. 2) have been reported to be a potent stimulant of antibody production and free of pyrogenicity. These compounds with close structural resemblance to bacterial cell wall peptidoglycan peptides, exhibit very interesting biological activities. Both FK-156 10 and FK-565 11 (Fig. 3) enhance host defense ability against microbial infections, exhibit strong antiviral activity and remarkable antitumor potency [2, 13, 14, 18]. Also other acyl-DMPs were obtained and their activity described (Table 1). The most promising DMPs analogues were series of phthalimido-DMPs 46-53 (Fig. 7). In these compounds N-acetylmuramic acid residue was replaced by various N-phthaloylated amino acids [42–49] or phthalimido substituted aminoethoxyacetic acid to give immunologically active acyclic MDP analogues like LK-423 46 (LK-413 47, LK-511 48, LK-512 49, LK-508 50) (Fig. 7) [42, 47–49]. LK-423 has been selected for further studies to develop an anti-inflammatory pharmaceutical agent. In 2001 Gobec et al. [54] reported the synthesis of new adamantyl-DMPs LK-415 55 and LK-517 56 (Fig. 8) with 1-adamantyl-carboxamido moiety replacing N-acetylglucosamine fragment in MDP. Their efficiency in modulating the production of cytokines IL-12, TNFá, IFNă, IL-4, and IL-10 was measured in vitro in ionomycin and PMA activated cultures of PBMC, co-incubated with the analogues tested. The results were compared with the activity of MDP. All substances were strong regulators of IL-12 synthesis and IFNă synthesis as well. Introduction of diethyl phosphonate moiety into LK-517 was of great importance for augmented T-cell cytokine production. Dzierzbicka et al. [55] described synthesis of three analogues of DMPs 57a,b, 58 modified with an amino-acridine/acridone residue. The screening data indicate that the analogues 57a,b and 58 (Fig. 9) exhibit low cytotoxic activity. Uehara et al. [59] reported MDP and DAP-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists (Fig. 10) synergistically induced production of IL-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. In 2008 Kawasaki et al. [33] designed synthesis of DAP containing PGN fragments and tracheal cytotoxin (TCT) (Fig. 5) and investigated their biological activity. Recently, N-acetylglucosamine- 1,6-anhydro-N-acetylmuramylpentapeptide (Fig. 12) and evaluation of its turnover by AmpD from Escherichia coli has been reported [61]. The synergism of MDP and DMPs with other chemotherapeutics is also promising in the therapy of many infectious and anticancer diseases. This paper reviews the most important approaches to desmuramylpeptides (DMPs), their derivatives and displays structure-reactivity relationships of these compounds.
Rocznik
Strony
1089--1114
Opis fizyczny
bibliogr. 62 poz., wykr.
Twórcy
autor
autor
  • Katedra Chemii Organicznej, Wydział Chemiczny, Politechnika Gdańska, ul. G. Narutowicza 11/12, 80-233 Gdańsk, kd@chem.pg.gda.pl
Bibliografia
  • [1] J. Gołąb, M. Jakóbisiak, W. Lasek, Immunologia, Wydawnictwo Naukowe PWN, Warszawa, 2005.
  • [2] K. Dzierzbicka, A.M. Kołodziejczyk, Pol. J. Chem., 2003, 77, 373.
  • [3] K. Dzierzbicka, Zeszyty Naukowe Politechniki Gdańskiej, 2004, 52.
  • [4] M. Karaś, W. Drożański, R. Russa, Post. Mikrobiol., 2006, 45, 27.
  • [5] W. Weidel, H. Pelzer, adv. Enzymol. RAMB, 1964, 26, 193.
  • [6] E.M. Creagh, L.A. O'Neill, Trends Immunol., 2006, 27, 352.
  • [7] A.M. Kołodziejczyk, A.S. Kołodziejczyk, Post. Biochem., 1987, 33, 203.
  • [8] S. Traub, S. von Aulock, T. Hartung, C. Hermann, J. Endotoxin Res., 2006, 12, 69.
  • [9] Y. Fujimoto, Y. Konishi, O. Kubo, M. Hasegawa, N. Inohara, K. Fukase, Tetrahedron Lett., 2009, 50, 3631.
  • [10] T. Jędrzejczyk, Scientific Bulletin of the Technical University of Lodz, Food Chemistry and Biotechnology, 2008, 72, 105.
  • [11] F. Ellouz, A. Adam, R. Ciorbaru, E. Lederer, Biochem. Biophys. Res. Commun., 1974, 59, 1317.
  • [12] P. Lefrancier, J. Choay, M. Derrien, I. Lederman, Int. J. Pept. Protein Res., 1977, 9, 249.
  • [13] G. Baschang, Tetrahedron, 1989, 45, 6331.
  • [14] P. Romanowski, K. Dzierzbicka, A. Myoeliwski, A.K. Kołodziejczyk, Post. Biochem., 1991, 37, 159.
  • [15] G.M. Bahr, L. Chedid, Fed. Proc., 1986, 45, 2541.
  • [16] K. Mašek, Meth. Exp. Clin. Pharmacol., 1986, 8, 97.
  • [17] D. Migliore-Samour, J. Bouchaudon, F. Floc'h, A. Zerial, L. Ninet, G. Werner, P. Jolles, Life Sci., 1980, 26, 883.
  • [18] A. Adam, E. Lederer, Med. Res. Rev., 1984, 4, 111.
  • [19] E. Telzak, E.M. Wolff, A. Dinarello, J. Infect. Dis., 1986, 153, 628.
  • [20] G.J. Riveau, B.G. Brunel-Riveau, F.M. Audibert, Cell. Immunol., 1991, 134, 147.
  • [21] Y. Kitara, O. Nakaguchi, H. Takeno, S. Okada, S. Yonishi, K. Hemmi, J. Mori, H. Senoh, Y. Mine, M. Hashimoto, J. Med. Chem., 1982, 25, 335.
  • [22] T. Gotoh, K. Nakahara, T. Nishiura, M. Hashimoto, T. Kino, Y. Kuroda, M. Okuhara, M. Kohsaka, H. Aoki, H. Imanaka, J. Antibiotics, 1982, 35, 1282.
  • [23] S. Izumi, K. Nakahara, T. Gotoh, S. Hashimoto, T. Kino, M. Okuhara, H. Aoki, H. Imanaka, J. Antibiotics, 1983, 36, 566.
  • [24] Y. Mine, Y. Yokota, Y. Wakai, S. Fukada, M. Nishida, S. Goto, S. Kuwahara, J. Antibiotics, 1983, 36, 1045.
  • [25] Y. Yokota, Y. Mine, Y. Wakai, Y. Watanabe, M. Nishida, S. Goto, S. Kuwahara, J. Antibiotics, 1983, 36, 1051.
  • [26] Y. Mine, Y. Watanabe, S. Tawara, Y. Yokota, M. Nishida, J. Antibiotics, 1983, 36, 1059.
  • [27] Y. Watanabe, S. Tawara, Y. Mine, H. Kikuchi, J. Antibiotics, 1985, 38, 1781.
  • [28] K. Dzierzbicka, Pol. J. Chem., 2007, 81, 455.
  • [29] P. Dezelee, E. Bricas, Biochemistry, 1970, 9, 823.
  • [30] Y. Yokota, Y. Wakai, Y. Watanabe, Y. Mine, J. Antibiotics, 1988, 41, 1479.
  • [31] A.M. Kołodziejczyk, A.S. Kołodziejczyk, S. Stoev, Int. J. Pept. Protein Res., 1992, 39, 382.
  • [32] Y. Saito, T. Shinkai, Y. Yoshimura, H. Takahata, Bioorg. Med. Chem. Lett., 2007, 17, 5894.
  • [33] A. Kawasaki, Y. Karasudani, Y. Otsuka, M. Hasegara, N. Inohara, Y. Fujimoto, K. Fukase, Chem. Eur. J., 2008, 14, 10318.
  • [34] P.R. Blakemore, W.J. Cole, P.J. Kocienski, A. Morley, Synlett, 1998, 26.
  • [35] S. Izumi, K. Nakahara, T. Gotoh, S. Hashimoto, T. Kino, M. Okuhara, H. Aoki, H. Imanaka, J. Antibiotics, 1983, 36, 566.
  • [36] S. Sone, S. Matsuura, M. Ogawara, T. Utsugi, E. Tsubura, Cancer Immunol. Immunother., 1984, 18, 169.
  • [37] S. Sone, A. Okubo, N. Inamaru, N. Akihiko, T. Ogura, Cancer Immunol. Immunother., 1988, 27, 33.
  • [38] J. Danklmaier, H. Hönig, Leibigs Ann. Chem., 1990, 145.
  • [39] G. Serša, S. Novakoviè, A. Štalc, Mol. Biotherapy, 1992, 4, 188.
  • [40] M. Sollner, V. Kotnik, S. Peèar, A. Štalc, S. Simèiè, L. Povšiè, B. Herzog-Wraber, L. Klampfer, A. Ihan, P. Grosman, Agents Actions, 1993, 38.
  • [41] M.S. Dolenc, J. Cmosija, S. Simcic, B. Draber, S. Pecar, Pharmazie, 2006, 61, 866.
  • [42] U. Urleb, A. Krbavèiè, M. Sollner, D. Kikelj, S. Peèar, Arch. Pharm., 1995, 328, 113.
  • [43] S. Gobec, U. Urleb, Molecules, 2002, 7, 394.
  • [44] M. Moriguchi, K. Urabe, N. Norisada, C. Ochi, A. Štalc, U. Urleb, S. Muraoka, Drug Res., 1999, 49, 184.
  • [45] S. Šimèiè, B. Wraber, M. Sollner, U. Urleb, S. Gobec, Pflug. Arch. Eur. J. Phy, 2000, 440-R66.
  • [46] U. Urleb, S. Gobec, D. Prelog, Lett. Pept. Sci., 1995, 2, 193.
  • [47] S. Gobec, U. Urleb, Lett. Pept. Sci., 1998, 5, 109.
  • [48] S. Gobec, U. Urleb, Silicon Relat. Ele., 2000, 156, 125.
  • [49] S. Gobec, M. Sollner-Dolenc, U. Urleb, B. Draber, S. Simèiè, M. Filipiè, II Farmaco, 2004, 59, 345.
  • [50] M. Moriguchi, K. Urabe, N. Norisada, C. Ochi, A. Stalc, U. Urleb, S. Muraoka, Arzneimittel--Forschung, 1999, 49, 184.
  • [51] P.D. Becker, R.S. Corral, C.A. Guzmann, S. Grinstein, Vaccine, 2001, 19, 4603.
  • [52] P.D. Becker, M. Norder, C.A. Guzmán, S. Grinstein, Clin. Vaccine Immunology, 2007, 14, 538.
  • [53] G.M. Bertot, P.D. Becker, A. Guzman, S. Grinstein, J. Infect. Dis., 2004, 189, 1304.
  • [54] S. Gobec, U. Urleb, S. Simèiè, B. Wraber, Pharmazie, 2001, 7, 523.
  • [55] K. Dzierzbicka, A. Kołodziejczyk, B. Wysocka-Skrzela, A. Myoeliwski, D. Sosnowska, J. Med. Chem., 2001, 44, 3606.
  • [56] J. Uehri, K. Fukase, T. Akazawa, S. Uematsu, S. Akira, K. Funami, M. Shingai, M. Matsumoto, I. Azuma, K. Toyoshima, S. Kusumoto, T. Seya, J. Immunol., 2005, 7096.
  • [57] J.H. Fritz, S.E. Girardin, C. Fitting, C. Werts, D. Mengin-Lecreulx, M. Caroff, J-M. Cavallon, D.J. Philpott, M. Adib-Conquy, Eur. J. Immunol., 2005, 35, 2459.
  • [58] A. Uehara, Y. Fujimoto, A. Kawasami, S. Kusumoto, K. Fukase, H. Takada, J. Immunol., 2006, 177, 1796.
  • [59] A. Uehara, S. Yang, Y. Fujimoto, K. Fukase, S. Kusumoto, K. Shibata, S. Sugawara, H. Takada, Cell. Microbiol., 2005, 7, 53.
  • [60] Y. Fujimoto, S. Inamura, A. Kawasami, Z. Shiokawa, A. Shimoyama, T. Hashimoto, S. Kusumoto, K. Fukase, J. Endotoxin Res., 2007, 13, 189.
  • [61] D. Hesek, M. Lee, W. Zhang, B.C. Noll, S. Mobashery, J. Am. Chem. Soc., 2009, 131, 5187.
  • [62] D. Kikelj, S. Pecar, V. Kotnik, A. Stalc, B. Wraber-Herzog, S. Simcic, A. Ihan, L. Klamfer, L. Povsic, R. Grahek, E. Suhadolc, M. Hocevar, H. Honig, R. Rogi-Kohlenprath, J. Med. Chem., 1998, 41, 530.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.