PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanocząstki metali przejściowych - synteza i aktywność katalityczna

Identyfikatory
Warianty tytułu
EN
Transition metal nanoparticles - synthesis and catalytic activity
Języki publikacji
PL
Abstrakty
EN
Transition metal nanoparticles (also called metal colloids or nanoclusters) are ordered multi-atom sets characterized by a very small size, generally less than 20 nm. They are intermediate species between single atoms and crystals of macroscopic dimensions [1.8]. Nanoparticles have been synthesized by a variety of methods. The most common synthetic procedures involve chemical reduction of transition metal salts or complexes. By the choice of reduction conditions (kind of the reducing agent, type of the stabilizing agent and the elementary reaction parameters like temperature and concentration) it is possible to obtain colloids showing different particle sizes and morphologies. These two factors play a decisive role from the point of view of catalytic activity of nanoclusters. Palladium nanoparticles have been obtained by chemical reduction of PdCl2 aqueous solution using pyrogallol, hydrazine or chromium(II) acetate as the reducing agent. All these systems have demonstrated a very high catalytic activity in important carbon-carbon bond forming reactions (methoxycarbonylation, Heck and Suzuki processes) carried out under mild conditions [48, 49]. Some of the C.C coupling reactions have also been successfully catalyzed by nickel nanoparticles, however they require more harsh conditions [65, 66]. Cobalt and iron nanoparticles present magnetic properties attractive for application of these materials as removable electronic media of high capacity, as well as biosensors or magnetic probes for biological imaging and therapeutic use [9, 18]. The extreme reactivity of nanoparticles, specifically towards oxygen and water, complicates their synthesis, however it is also beneficial in catalytic applications [16, 17]. Conversion of CO/H2 mixture to hydrocarbons, known as Fischer-Tropsch synthesis, representing one of the most important routes to fuels production, is catalyzed very effectively by iron and cobalt nanoparticles. Monometallic and bimetallic cobalt nanoparticles are excellent catalysts of Pauson-Khand type couplings leading to cyclopentanones [17].
Rocznik
Strony
953--984
Opis fizyczny
bibliogr. 103, tab., wykr.
Twórcy
autor
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] W. Romanowski, Metale w stanie wysokiej dyspersji, PWN, Warszawa, 1979.
  • [2] G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, Wiley, New York, 1994.
  • [3] G. Schmid, Clusters and Colloids . From Theory to Applications, VCH, Weinheim, 1994.
  • [4] G. Schmid, Nanoparticles . From Theory to Applications, VCH, Weinheim, 2004.
  • [5] W. Romanowski, Mikrocząstki i clustery metaliczne w katalizie, PWN, Warszawa, 1983.
  • [6] L.N. Lewis, Chem. Rev., 1993, 93, 2693.
  • [7] J.D. Aiken III, R.G. Finke, J. Mol. Catal. A: Chem., 1999, 145, 1.
  • [8] M.T. Reetz, J.G. de Vries, Chem. Commun., 2004, 1559.
  • [9] N.A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev., 2009, 38, 2532.
  • [10] Y. Jun, J. Choi, J. Cheon, Chem. Comm., 2007, 1203.
  • [11] D. Astruc, Inorg. Chem., 2007, 46, 1884.
  • [12] A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev., 2005, 249, 2308.
  • [13] N. Toshima, T. Yonezawa, New J. Chem., 1998, 22, 1179.
  • [14] E. Gaffet, M. Tachikart, O. El Kedim, R. Rahouadj, Mater. Charact., 1996, 36, 185.
  • [15] N.R. Shiju, V.V. Guliants, Appl. Catal. A: General, 2009, 356, 1.
  • [16] D. Astruc, F. Lu, R. Aranzaes, Angew. Chem. Int. Ed., 2005, 44, 7852.
  • [17] M. Moreno-Manas, R. Pleixats, Acc. Chem. Res., 2003, 36, 638.
  • [18] D.L. Huber, Small, 2005, 1, 482.
  • [19] M.T. Reetz, W. Helbig, J. Am. Chem. Soc., 1994, 116, 7401.
  • [20] M.T. Reetz, S.A. Quaiser, Angew. Chem. Int. Ed. Engl., 1995, 34, 2240.
  • [21] M. Faraday, Philos. Trans. R. Soc. London, 1857, 147, 145.
  • [22] Y. Shiraishi, D. Ikenaga, N. Toshima, Aust. J. Chem., 2003, 56, 1025.
  • [23] C.W. Chen, T. Takezako, K. Yamamoto, T. Serizawa, M. Akashi, Colloids Surf. A: Physicochem. Eng. Asp., 2000, 169, 107.
  • [24] Y.T. Vu, J.E. Mark, Colloid Polym. Sci., 2004, 282, 613.
  • [25] A. Borsla, A.M. Wilhelm, H. Delmas, Catal. Today, 2001, 66, 389.
  • [26] J. Kiwi, M. Grätzel, J. Am. Chem. Soc., 1979, 101, 7214.
  • [27] C.K. Tan, V. Newberry, T.R. Webb, C.A. McAuliffe, J. Chem. Soc., Dalton Trans., 1987, 1299.
  • [28] P.D. Landre, D. Richard, M. Draye, P. Gallezot, M. Lemaire, J. Catal., 1994, 147, 214.
  • [29] K. Nasar, F. Fache, M. Lemaire, J.-C. Béziat, M. Besson, P. Gallezot, J. Mol. Catal., 1994, 87, 107.
  • [30] W. Yu, H. Liu, Chem. Mater., 1998, 10, 1205.
  • [31] M.A. Watzky, R.G. Finke, Chem. Mater., 1997, 9, 3083.
  • [32] J.D. Aiken III, R.G Finke, Chem. Mater., 1999, 11, 1035.
  • [33] J.D. Aiken III, R.G. Finke, J. Am. Chem. Soc., 1999, 121, 8803.
  • [34] D.I. Svergun, E.V. Shtykova, A.T. Dembo, L.M. Bronstein, O. A. Platonova, A.N. Yakunin, P.M. Valetsky, A.R. Khokhlov, J. Chem. Phys., 1998, 109, 11109.
  • [35] A.B.R. Mayer, S.H. Hausner, J.E. Mark, Polym. J., 2000, 32, 15.
  • [36] S. Kidambi, M.L. Bruening, Chem. Mater., 2005, 17, 301.
  • [37] Y.J. Huang, D. Li, P. He, C.Y. Sun, M.J. Wang, J.H. Li, J. Electroanal. Chem., 2005, 579, 277.
  • [38] D.H. Chen, S.H. Wu, Chem. Mater., 2000, 12, 1354.
  • [39] C.C. Wang, D.H. Chen, T.C. Huang, Colloids Surf. A: Physicochem. Eng. Asp., 2001, 189, 145.
  • [40] M. Adlim, M. Abu Bakar, K.Y. Liew, J. Ismail, J. Mol. Catal. A: Chem., 2004, 212, 141.
  • [41] H. Bönnemann, R.M. Richards, Eur. J. Inorg. Chem., 2001, 2455.
  • [42] R. Narayanan, M. El-Sayed, J. Phys. Chem. B, 2005, 109, 12663.
  • [43] D.H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, 1983.
  • [44] R.B. Grubbs, Polym. Rev., 2007, 47, 197.
  • [45] H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, A. Schulze-Tilling, K. Seevogel, K. Siepen, J. Organomet. Chem., 1996, 520, 143.
  • [46] M.T. Reetz, G. Lohmer, Chem. Commun., 1996, 1921.
  • [47] F.-X. Felpin, T. Ayad, S. Mitra, Eur. J. Org. Chem., 2006, 2679.
  • [48] A. Gniewek, A.M. Trzeciak, J.J. Ziółkowski, L. Kępiński, J. Wrzyszcz, W. Tylus, J. Catal., 2005, 229, 332.
  • [49] A. Gniewek, J.J. Ziółkowski, A.M. Trzeciak, L. Kępiński, J. Catal., 2006, 239, 272.
  • [50] M.T. Reetz, M. Maase, Adv. Mater., 1999, 11, 773.
  • [51] H.P. Choo, K.Y. Liew, W.A.K. Mohamood, H. Liu, J. Mater. Chem., 2001, 11, 2906.
  • [52] H.P. Choo, K.Y. Liew, H. Liu, J. Mater. Chem., 2002, 12, 934.
  • [53] J. Wrzyszcz, W. Mi.ta, D. Hreniak, W. Stręk, M. Zawadzki, H. Grabowska, J. Alloys Compd., 2002, 341, 358.
  • [54] H. Grabowska, L. Syper, M. Zawadzki, Appl. Catal. A: Gen., 2004, 277, 91.
  • [55] J.-M. Basset, F. Lefebvre, C. Santini, Coord. Chem. Rev., 1998, 178, 1703.
  • [56] M. Campanati, G. Fornasari, A. Vaccari, Catal. Today, 2003, 77, 299.
  • [57] I. Pryjomska-Ray, A. Gniewek, A. M. Trzeciak, J. J. Ziółkowski, W. Tylus, Top. Catal., 2006, 40, 173.
  • [58] I. Pryjomska-Ray, Palladowe układy katalityczne dla reakcji Hecka, Praca doktorska, Uniwersytet Wrocławski . Wydział Chemii, 2007.
  • [59] S. Castillo, M. Morán-Pineda, R. Gómez, Catal. Commun., 2001, 2, 295.
  • [60] J. Wrzyszcz, M. Zawadzki, A.M. Trzeciak, W. Tylus, J.J. Ziółkowski, Catal. Lett., 2004, 93, 85.
  • [61] A. Gniewek, J.J. Ziółkowski, A.M. Trzeciak, M. Zawadzki, H. Grabowska, J. Wrzyszcz, J. Catal., 2008, 254, 121.
  • [62] F. Bellina, A. Carpita, R. Rossi, Synthesis, 2004, 2419.
  • [63] A. Desforges, R. Backov, H. Deluze, O. Mondain-Monval, Adv. Funct. Mater., 2005, 15, 1689.
  • [64] A. Gniewek, Nanocząstki palladowe i rodowe aktywne w reakcjach katalitycznych, Praca doktorska, Uniwersytet Wrocławski . Wydział Chemii, 2009.
  • [65] J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.J. Noh, J.H. Park, C.J. Bae, J.G. Park, T. Hyeon, Adv. Mater., 2005, 17, 429.
  • [66] C.E. Tucker, J.G. de Vries, Top. Catal., 2002, 19, 111.
  • [67] P. Lu, T. Teranishi, K. Asakura, M. Miyake, N. Toshima, J. Phys. Chem. B, 1999, 103, 9673.
  • [68] M.L. Singla, A. Negi, V. Nahajan, K.C. Singh, D.V.S. Jain, Appl. Catal. A: Gen., 2007, 323, 51.
  • [69] J. Osuna, D. de Caro, C. Amiens, B. Chaudret, E. Snoeck, M. Respaud, J.-M. Broto, A. Fert, J. Phys. Chem., 1996, 100, 14571.
  • [70] F.A. Reboredo, G. Galli, J. Phys. Chem. B, 2006, 110, 7979.
  • [71] F. Dumestre, B. Chaudret, C. Amiens, M.-C. Fromen, M.-J. Casanove, P. Renaud, P. Zurcher, Angew. Chem. Int. Ed. Engl., 2002, 41, 4286.
  • [72] A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.-J. Qin, J.S. Jiang, S.D. Bader, X.-M. Lin, J. Am. Chem. Soc., 2005, 127, 4126.
  • [73] J.L. Rodgers, J.W. Rathke, R.J. Klinger, C.L. Marshall, Catal. Lett., 2007, 114, 145.
  • [74] E. Barea, X. Batile, F. Bourges, A. Corma, V. Fornes, A. Labarta, V. F. Puntes, J. Am. Chem. Soc., 2005, 127, 18026.
  • [75] G. Prieto, A. Martinez, P. Concepcion, R. Moreno-Tost, J. Catal., 2009, 266, 129.
  • [76] J.U. Ribeiro, J.W.C. Liberatori, H. Winnishofer, J.M.C. Bueno, D. Zanchet, Appl. Catal. B: Environmental, 2009, 91, 670.
  • [77] G.L. Bezemer, U. Falke, A.J. van Dillen, K.P. de Jong, Chem. Commun., 2005, 731.
  • [78] W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, J. Catal., 2007, 252, 215.
  • [79] D.O. Silva, J.D. Scholten, M.A. Gelesky, S.R. Teixera, A.C.B. Dos Santos, E.F. Souza-Aguiar, J. Dupont, ChemSusChem., 2008, 1, 291.
  • [80] A. Schätz, R.N. Grass, W.J. Stark, O. Reiser, Chem. Eur. J., 2008, 14, 8262.
  • [81] H. Li, J. Liu, S. Xie, M. Qiao, W. Dai, X. Li, J. Catal., 2008, 259, 104.
  • [82] J.-I. Park, N.-J. Kang, Y.-W. Jun, S.J. Oh, H.-C. Ri, J. Cheon, Chem. Phys. Chem., 2002, 6, 543.
  • [83] J.Y. Kim, J.H. Park, O.-S. Jung, Y.K. Chung, K.H. Park, Catal. Lett., 2009, 128, 483
  • [84] K.H. Park, S.Y. Kim, Y.K. Chung, Org. Biomol. Chem., 2005, 3, 395.
  • [85] K.H. Park, I. Gu, Jung, Y.K. Chung, Org. Lett., 2004, 6, 1183.
  • [86] T.W. Smith, D. Wychick, J. Phys. Chem., 1980, 84, 1621.
  • [87] K.S. Suslick, M. Fang, T. Hyeon, J. Am. Chem. Soc., 1996, 118, 11960.
  • [88] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Soc., 2001, 123, 12798.
  • [89] D. Farrell, S.A. Majetich, J.P. Wilcoxon, J. Phys. Chem. B, 2003, 107, 11022.
  • [90] S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc., 2000, 122, 8581.
  • [91] T. Hyeon, Chem. Comm., 2003, 927.
  • [92] G. Kataby, A. Ulman, M. Cojocaru, A. Gedanken, J. Mater. Chem., 1999, 9, 1501.
  • [93] E. Lamouroux, P. Serp, Y. Kihn, P. Kalck, Catal. Comm., 2006, 7, 604.
  • [94] J.-M. Yan, X.-B. Zhang, S. Han, H. Shioyama, Q. Xu, Angew. Chem. Int. Ed. Engl., 2008, 47, 2287.
  • [95] J. Huo, H. Song, X. Chen, S. Zhao, C. Xu, Mat. Chem. Phys., 2007, 101, 221.
  • [96] T. Nakae, Y. Matsuo, M. Takagi, Y. Sato, K. Suenaga, E. Nakamura, Chem. Asian J., 2009, 4, 457.
  • [97] C. Gonzalez-Arellano, J.M. Campelo, D.J. Macquarrie, J.M. Marinas, A.A. Romero, R. Luque, ChemSusChem., 2008, 1, 746.
  • [98] N. Dahal, V. Chikan, J. Jasinski, V.J. Leppert, Chem. Mater., 2008, 20, 6389.
  • [99] V. Saez, J. Gonzalez-Garcia, M. A. Kulandainathan, F. Marken, Electrochem. Comm., 2007, 9, 1127.
  • [100] M. Wen, H. Qi, W. Zhao, J. Chen, L. Li, Q. Wu, Coll. Surf. A: Physicochem. Eng. Aspects, 2008, 312, 73.
  • [101] G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Inorg. Chem., 1995, 34, 28.
  • [102] A.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, J. Nanoscience and Nanotechnology, 2009, 9, 3695.
  • [103] H. Tian, J. Li, Z. Mu, L. Li, Z. Hao, Sep. Purif. Technol., 2009, 66, 84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.