PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza, właściwości optyczne i elektryczne nanokrystalicznych materiałów BaTiO_3 domieszkowanych jonami ziem rzadkich

Identyfikatory
Warianty tytułu
EN
Synthesis, optical and electrical properties of nanocrystalline BaTiO_3 doped with rare earth ions
Języki publikacji
PL
Abstrakty
EN
The main goals of the presented paper were focused on synthesis of nanocrystalline BaTiO^3 materials doped with chosen rare earth ions (Eu^3+ and Yb^3+) utilizing sol-gel technique. Structure, morphology, optical and electrical properties were characterized. Size effects and their influence on the mentioned physicochemical properties were discussed. Strong effect of the dopant concentration on the structure of BaTiO_3 was found. In case of the Eu3+ ions doping results in stabilization of tetragonal phase of BaTiO^3 whereas addition of the Yb^3+ ions favors formation of the cubic structure. Besides that all introduced ions could be considered as inhibitors for the grain growth process. Moreover resulted powders showed co-existence of the tetragonal (ferroelectric) and cubic (paraelectric) phases. The amount of the tetragonal phase depends on the heat treatment temperature and concentration of the incorporated rare earth ions. The structural changes of a matrix were studied using the Eu^3+ and Yb^3+ ions as optical probes. Their luminescence properties were dependent on the sintering temperature. In case of the Eu^3+ ions we have found that the intensities of D→7F transitions increased with the increasing temperature. It means higher Eu3+ ions symmetry associates with higher temperature [1–4]. On the other hand in nano-crystals doped with Yb3+ ions a higher intensity of SHG (second harmonic generation) was observed in the tetragonal phase, whereas the isotropic cubic phase was detected by the absence of a SHG signal. Cooperative emission, indicating the presence of Yb3+ ion pairs, was easily detected in the cubic phase and not seen in the ferroelectric tetragonal structure [5]. BaTiO_3 nanoceramics were fabricated from the nanopowders using LTHP (low-temperature high pressure) sintering process [6, 7]. The impedance spectra indicated the complex nature of the effects appearing in the analyzed BaTiO3 nanoceramics. Four types of physical mechanisms contributing to the overall conductivity were found, namely hopping, diffusion, two relaxation mechanisms and the dc conduction. The studied samples show a ferroelectric-paralelectric phase transition observed for the higher frequency regions.
Rocznik
Strony
878--931
Opis fizyczny
bibliogr. 165 poz., rys.,tab.,wykr.
Twórcy
autor
autor
autor
  • Instytut Niskich Temperatur i Badań Strukturalnych, Polska Akademia Nauk, ul. Okólna 2, 50-422 Wrocław Department of Chemistry, SLU, Box 7015, SE-75007, Uppsala, Sweden
Bibliografia
  • [1] I . Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ionics, 2005, 176, 1319.
  • [2] I . Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Electrochem. Solid State, 2004, 7, A459.
  • [3] T. Suzuki, I. Kosacki, H.U. Anderson, Solid State Ionics, 2002, 151, 111.
  • [4] P . Nemec, P. Maly, M. Nikl, K. Nitsch, Appl. Phys. Lett., 2000, 76, 2850.
  • [5] D. Hreniak, W. Strek, J. Chmielowiec, G. Pasciak, R. Pazik, S. Gierlotka, W. Lojkowski, J. Alloy. Compd., 2006, 408, 637.
  • [6] A.J. Zaleski, M. Nyk, W. Strek, Appl. Phys. Lett., 2007, 90, 42511.
  • [7] H.X. Shun, F.J. Wei, Y.L. Long, J.L. Xin, Mat. Chem. Phys., 2007, 106, 82.
  • [8] P . De Padova, L. Favre, I. Berbezier, B. Olivieri, A. Generosi, B. Paci, V.R. Albertini, P. Perfetti, C. Quaresima, J.M. Mariot, I.A. Taleb, M.C. Richter, O. Heckmann, F. D'Orazio, F. Lucari, K . Hricovini, Surf. Sci., 2007, 601, 4370.
  • [9] M.E. McHenry, D.E. Laughlin, Acta Mater., 2000, 48, 223.
  • [10] D. Hreniak, A. Speghini, M. Bettinelli, W. Strek, J. Lumin., 2006, 119-120, 219.
  • [11] X. Yu, P. Zhou, L. Yang, S. Yang, W. Gao, J. Lumin., 2007, 124, 241.
  • [12] P .J. Deren, M.A. Węglarowicz, P. Mazur, W. Stręk, J. Lumin., 2007, 122, 780.
  • [13] J. Amami, D. Hreniak, Y. Guyot, R. Pązik, W. Stręk, C. Goutaudier, G. Boulon, J. Phys. Condens. Mat., 2007, 19, 14.
  • [14] J. Trojan-Piegza, E. Zych, D. Hreniak, W. Stręk, J. Alloy. Compd., 2004, 380, 123.
  • [15] M. Nyk, D. Hreniak, W. Stręk, J. Misiewicz, E. Zych, Opt. Mater., 2004, 26, 129.
  • [16] M. Nyk, R. Kudrawiec, Stręk W., Misiewicz J., Opt. Mater., 2006, 28, 767.
  • [17] P .J. Dereń, R. Pązik, W. Stręk, Ph. Boutinaud, R. Mahiou, J. Alloy. Compd., 2008, 451, 595.
  • [18] A. Rudiger, R. Waser, J. Alloy. Compd., 2008, 449, 2.
  • [19] F. Michael, C. Gonzales, V. Mujica, M. Marquez, M.A. Ratner, Phys. Rev. B., 2007, 76, 224409.
  • [20] Th. Michael, S. Trimper, J.M. Wesselinowa, Phys. Rev. B, 2006, 74, 214113.
  • [21] R. Kudrawiec, M. Nyk, M. Syperek, A. Podhorodecki, J. Misiewicz, W. Stręk, Appl. Phys. Lett., 2006, 88, 181916.
  • [22] C. Clavero, B. Sepulveda, G. Armelles, Z. Konstantinovic, M.G. del Muro, A. Labarta, X. Batlle, J. Appl. Phys., 2006, 100, 074320.
  • [23] C. Jian, H. Zhu, Z. Jue, Compos. Sci. Technol., 2007, 67, 2990.
  • [24] A.Z. Simoes, C.S. Riccardi, L.S. Cavalcante, A.H.M. Gonzalez, E. Longo, J.A. Varela, Mater. Res. Bull., 2008, 43, 158.
  • [25] C.C. Yi, M.C. Jin, H.H. Yue, R.L. Yu, H.C. Shih, Surf. Coat. Tech., 2007, 202, 1313.
  • [26] H.L. Quang, Q.C. He, J. Mech. Phys. Solids, 2007, 55, 1899.
  • [27] R.A. Rocha, E.N.S. Muccillo, J. Alloy. Compd., 2007, 443, 149.
  • [28] Y. Kobayashi, A. Nishikata, T. Tanase, M. Konno, J. Sol-Gel Sci. Techn., 2004, 29, 49
  • [29] M.H. Frey, D.A. Payne, Ferroelectics, 1998, 206-207, 337
  • [30] C.J. Xiao, W.W. Zhang, Z.H. Chi, F.Y. Li, S.M. Feng, C.Q. Jin, X.H. Wang, L.T. Li, R.Z. Chen, P hys. Status Solidi A, 2007, 204, 874
  • [31] Z . Zhao, V. Buscalia, M. Viviani, M.T. Buscaglia, T. Mitosieru, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B, 2004, 70, 024107.
  • [32] Z .L. Wang, Characterization of Nanophase Materials, Wiley-VCH Verlag Gmbh 2000.
  • [33] G. Cao, Nanostructures and nanomaterials, Imperial College Press, London 2004.
  • [34] I . Kosacki, 160 lat Ogniw paliwowych - niemożliwe staje się możliwe, Ogniwa paliwowe nowe kierunki rozwoju, Wiadomości Chemiczne, Wrocław 2005.
  • [35] I . Kosacki, H.U.Anderson, Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., New York 2001.
  • [36] X.F. Zhang, X.L. Dong, H. Huang, B. Lu, X.G. Zhu, J.P. Lei, S. Ma, W. Liu, Z.D. Zhang, Acta Mater., 2007, 55, 3727.
  • [37] V. Sverdlov, E. Ungersboeck, H. Kosina, S. Selberherr, Mater. Sci. Eng. R, 2008, 58, 228.
  • [38] O. Ehlert, A. Tiwari, T.Nann, J. Appl. Phys., 2006, 100, 074314.
  • [39] V. Rinnerbauer, K. Hingerl, M. Kovalenko, W. Heiss, Appl. Surf. Sci., 2007, 254, 291.
  • [40] P . Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B, 2003, 68, 351041.
  • [41] M. Suleiman, N.M. Jisrawi, O. Dankert, M.T. Reetz, C. Bahtz, R. Kirchheim, A. Pundt, J. Alloy. Compd., 2003, 356-357, 644.
  • [42] W.H. Qi, M.P. Wang, Y.C. Su, J. Mater. Sci. Lett., 2002, 21, 877.
  • [43] C. Solliard, M. Flueli, Surf. Sci., 1985, 156, 487.
  • [44] Q. Li, L. Gao, D. Yan, Mater. Chem. Phys., 2000, 64, 41.
  • [45] J.G. Lee, H. Mori, Diff. Defect Data Part B, 2007, 127, 135.
  • [46] W.K. Kwan, H.L. Bo, S. Moonsub, Chem. Mater., 2006, 18, 6357.
  • [47] V.V. Levdanskii, J. Smolik, P. Moravec, J.Eng. Phys. Thermophys., 2006, 79, 217.
  • [48] Y.S. Kwon, P.P. Choi, J.S. Kim, D.H. Kwon, K.B. Gerasimov, Diff. Defect Data Part B, 2006, 188, 651.
  • [49] S . Weian, J. Appl. Phys., 2006, 100, 83503.
  • [50] J. Schmidt, W. Vogelsberger, J. Phys. Chem. B, 2006, 110, 3955.
  • [51] N . Manaswita, B. Pratyay, S.V. Manorama, Mater. Res. Bull., 2007, 42, 1691.
  • [52] M. Zawadzki, J. Alloy. Compd., 2007, 439, 312.
  • [53] H. Wei-In, L. Ya-Shiuan, C. Yu-Chie, L. Chi-Shen, Chem. Phys. Lett., 2007, 441, 294.
  • [54] X. Gang, H.M. Zhen, J. Appl. Phys., 2000, 88, 519.
  • [55] X. Gang, X. Ming, Zhenhong M., Solid State Commun., 2001, 118, 53.
  • [56] J.Y. Lee, K.S. Lee, S.K. Kim, Appl. Phys. Lett., 2007, 91, 122513.
  • [57] F. Dobrich, A. Michels, R. Birringer, J. Magn. Magn. Mater., 2007, 316, e779.
  • [58] C.R. Alves, R. Aquino, J. Depeyrot, F.A. Tourinho, E. Dubois, R. Perzynski, J. Mater. Sci., 2007, 42, 2297.
  • [59] J. Lee, D. Suess, T. Schrefl, K.H. Oh, J. Fidler, J. Magn. Magn. Mater., 2007, 310, 2445.
  • [60] M.A. Islam, R.T. Geiger, K. Jaekyun, Nanotechnology, 2007, 18, 6.
  • [61] J.M. Shieh, Y.F. Lai, W.X. Ni, H.C. Kuo, C.Y. Fang, J.Y. Huang, C.L. Pan, Appl. Phys. Lett., 2007, 90, 51105
  • [62] W. Mathis, Int. Conf. on Signals and Electronic Systems Conference Proceedings, 2006, 57
  • [63] Y. Liu, H. Jiang, T. Egawa, B. Zhang, H. Ishikawa, J. Appl. Phys., 2006, 99, 123702
  • [64] H. Ouyang, C.C. Striemer, P.M. Fauchet, Appl. Phys. Lett., 2006, 88, 163108
  • [65] L . Guo-Yu, L. Yang-Wei, H. Yu-Fen, C. Huan-Tsung, J. Mater. Chem., 2007, 17, 2661
  • [66] X. Zianni, A.G. Nassiopoulou, J. Appl. Phys., 2006, 100, 074312
  • [67] A. Podhorodecki, J. Andrzejewski, R. Kudrawiec, J. Misiewicz, J. Wojcik, B.J. Robinson, T. Roschuk, D.A. Thompson, P. Mascher, J. Appl. Phys., 2006, 100, 13111
  • [68] A.G. Kuzmenkov, V.M. Ustinov, G.S. Sokolovskii, N.A. Maleev, S.A. Blokhin, A.G. Deryagin, S .V. Chumak, A.S. Shulenkov, S.S. Mikhrin, A.R. Kovsh, A.D. McRobbie, W. Sibbett, M.A. Cataluna, E.U. Rafailov, Appl. Phys. Lett., 2007, 91, 121106.
  • [69] R. Pazik, D. Hreniak , W. Strek, A. Speghini, M. Bettinelli, Opt. Mater., 2006, 28, 1284.
  • [70] D. Hreniak, P. Głuchowski, W. Stręk, M. Bettinelli, A. Kozłowska, M. Kozlowski, Mater. Sci., 2006, 24, 405.
  • [71] D. Hreniak, J. Holsa, M. Lastusaari, W. Stręk, J. Lumin., 2007, 122-123, 91.
  • [72] D. Son, J. Dae-Ryong, K. Jongmin, M. Taeho, K. Chunjoong, P. Byungwoo, Appl. Phys. Lett., 2007, 90, 101910.
  • [73] L . Feng, M. En, C. Daqin, Y. Yunlong, W. Yuansheng, J. Phys. Chem. B, 2006, 110, 20843.
  • [74] T. Isobe, Phys. Status Solidi A, 2006, 203, 2686.
  • [75] G.A. Appleby, A. Edgar, G.V.M. Williams, A.J.J. Bos, Appl. Phys. Lett., 2006, 89, 101902.
  • [76] Z . Wei, L. Sun, C. Liao, J. Yin, X. Jiang, C. Yan, J. Phys. Chem. B, 2002, 106, 10610.
  • [77] R. Fedyk, D. Hreniak, W. Łojkowski, W. Stręk, H. Matysiak, E. Grzanka, S. Gierlotka, P. Mazur, Opt. Mater., 2007, 29, 1252.
  • [78] D. Hreniak, R. Fedyk, A. Bednarkiewicz, W. Stręk, W. Łojkowski, Opt. Mater., 2007, 29, 1244.
  • [79] W. Stręk, A. Bednarkiewicz, D. Hreniak, P. Mazur, W. Łojkowski, J. Lumin., 2007, 122-123, 70.
  • [80] D. Hreniak, S. Gierlotka, W. Łojkowski, W. Stręk, P. Mazur, R. Fedyk, Diff. Defect Data Part B, 2005, 106, 17.
  • [81] I . Kosacki, V. Petrovsky, H.U. Anderson, Appl. Phys. Lett., 1999, 74, 341.
  • [82] M. Aoki, Y.M. Chiang, I. Kosacki, L.J.R. Lee, H. Tuller, L. Yaping, J. Am. Ceram. Soc., 1996, 79, 1169.
  • [83] T. Suzuki, I. Kosacki, H.U. Anderson, J. Am. Ceram. Soc., 2002, 85, 1492.
  • [84] Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, Appl. Phys. Lett., 1996, 69, 185.
  • [85] T. Omata, Y. Goto, Y.M.S. Otsuka, Sci. Technol. Adv. Mater., 2007, 8, 524.
  • [86] Z . Qingshan, F. Baoan, Solid State Ionics Diff. Reactions, 2005, 176, 889.
  • [87] W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phys. Rev. B, 1994, 50, 698.
  • [88] L . Mitoseriu, V. Buscaglia, M.T. Buscaglia, M. Viviani, P. Nanni, V. Trefiletti, P. Piaggio, I . Gregora, T. Ostapchuk, J. Pokorny, J. Petzelt, J. Eur. Ceram. Soc., 2006, 26, 2889.
  • [89] Th. Michael, S. Trimper, Phys. Rev. B, 2007, 76, 094107.
  • [90] T. Takeuchi, M. Tabuchi, K. Ado, K. Honjo, O. Nakamura, Y. Suyama, N. Ohtori, M. Nagasawa, J. Mater. Sci., 1997, 32, 4053.
  • [91] M.P. McNeal, S.-J. Jang, R.E. Newnham, J. Appl. Phys., 1998, 83, 3288.
  • [92] Y. Park, H.G. Kim, Ceram. Int., 1997, 23, 329.
  • [93] M. Takagi, T. Ishidate, Solid State Commun., 2000, 113, 423.
  • [94] C. Miot, C. Proust, E. Husson, J. Eur. Ceram. Soc., 1995, 15, 1163.
  • [95] L . Mitoseriu, V. Tura, C. Papusoi, D. Ricinschi, C. Harnagea, Mater. Lett., 1996, 29, 25.
  • [96] E. Brzozowski, M.S. Castro, Ceram. Int., 2000, 26, 265.
  • [97] R. Bottcher, C. Klimm, D. Michel, H.-C. Semmelhack, G. Volkel, Phys. Rev. B, 2000, 62, 2085.
  • [98] J.C. Niepce, G. Thomas, Solid State Ionics, 1990, 43, 69.
  • [99] F. Guangneng, H. Lixia, H. Xueguang, J. Cryst. Growth, 2005, 279, 489.
  • [100] Z .G. Shen, J.F. Chen, J. Yun, J. Cryst. Growth, 2004, 267, 325.
  • [101] W. Lu, M. Quilitz, H. Schmidt, J. Eur. Ceram. Soc., 2007, 27, 3149.
  • [102] Y. Songhak, B. Sunggi, G.K. Min, S. Namsoo, K. Insung, J. Am. Ceram. Soc., 2007, 90, 311.
  • [103] W. Xiaohui, L. Xiaolin, Y. Tao, C. Jianfeng, Key Eng. Mater., 2007, 336-338, 2293.
  • [104] W. Sun, C. Li, J. Li, W. Liu, Mater. Chem. Phys., 2006, 97, 481.
  • [105] Y. Hotta, K. Tsunekawa, C. Duran, K. Sato, T. Nagaoka, K. Watari, Mater. Sci. Eng. A, 2008, 475, 57.
  • [106] Z . Xinhua, Z. Jianmin, Z. Shunhua, L. Zhiguo, M. Naiben, J. Cryst. Growth, 2008, 310, 434.
  • [107] Y.V. Kolen'ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura, J. Phys.-Chem. C, 2007, 111, 7306.
  • [108] S .M. Moon, L. Chongmu, N.H. Cho, J. Electroceram., 2006, 17, 841.
  • [109] S . Weian, L. Junqing, L. Wen, L. Chuiha, J. Am. Ceram. Soc., 2006, 89, 118.
  • [110] K . Tokita, S. Sato, Key Eng. Mater., 2006, 301, 219.
  • [111] H.P. Sun, X.Q. Pan, J.H. Haeni, D.G. Schlom, Appl. Phys. Lett., 2004, 85, 1967.
  • [112] H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, D.G. Schlom, Appl. Phys. Lett., 2004, 84, 3298.
  • [113] Y. Yoneda, K. Sakaue, H. Terauchi, Surf. Sci., 2003, 529, 283.
  • [114] K .S. Martirosyan, D. Nawarathna, J.R. Claycomb, J.H. Miller, D. Luss, J. Phys. D, 2006, 39, 3689.
  • [115] L . Shaohua, Zilong T., Y. Weihua, Z. Zhongtai, Microelectronic Eng., 2003, 66, 147.
  • [116] T.V. Anuradha, S. Ranganathan, T. Mimani, K.C. Patil, Scripta Mater., 2001, 44, 2237.
  • [117] H.P. Beck, W. Eiser, R. Haberkorn, J. Eur. Ceram. Soc., 2001, 21, 687.
  • [118] U.Y. Hwang, H.S. Park, K.K. Koo, J. Am. Ceram. Soc., 2004, 87, 2168.
  • [119] Y. Pengfei, C. Bin, S. Qizhen, Mater. Sci. Eng. A, 2008, 473, 34.
  • [120] S . Sannian, Z. Jiwei, Y. Xi, Mater. Sci. Eng. B, 2007, 145, 28.
  • [121] T. Makino, M. Arimura, K. Fujiyoshi, Y. Yamashita, Key Eng. Mater., 2007, 350, 31.
  • [122] Y. Pengfei, W. Xue, C. Bin, Scripta Mater., 2007, 57, 623.
  • [123] J. Azadmanjiri, H.K. Salehani, H.A. Dehghan, M. Sadeghi, Diff. Defect Data B, 2007, 121-123, 53.
  • [124] M. Cernea, O. Monnereau, P. Llewellyn, L. Tortet, C. Galassi, J. Eur. Ceram. Soc., 2006, 26, 3241.
  • [125] O.A. Harazinov, Mater. Lett., 1998, 34, 232.
  • [126] M.N. Kamalasanan, N. Deepak Kumar, S. Chandra, J. Appl. Phys., 1993, 74, 5679.
  • [127] J.L. Woodhead, P. Groves, USA Patent 5,091,348.
  • [128] U. Varshney, A.I. Kingon, USA Patent 5,626,670.
  • [129] W. Romanowski, Metale w stanie wysokiej dyspersji, PWN, Warszawa 1979.
  • [130] P . Klug, L.E. Alexander, X-ray diffraction procedure, Wiley, New York, 1996.
  • [131] A.L. Patterson, Phys. Rev., 1939, 56, 978.
  • [132] R. Pielaszek, Dyfrakcyjne badania mikrostruktury nanokryształów poddawanych działaniu wysokiego ciśnienia, Praca doktorska, Uniwersytet Warszawski, Warszawa 2003.
  • [133] B. Pałosz, E. Grzanka, S. Gierlotka, S. Stel'makh, R. Pielaszek, U. Bismayer, J. Neuefeind, H.P. Weber, S. Werner, W. Pałosz, Acta Phys. Polon. A, 2002, 102, 57.
  • [134] L . Kępiński, L. Krajczyk, Nanomateriały, Wiadomości Chemiczne, Wrocław 2004.
  • [135] T. Hatakeyama, F.X. Quinn, Thermal analysis: fundamentals and applications to polymer science, Wiley, New York, 1999.
  • [136] E. Barsoukov, Ross Macdonald J., Impedance spectroscopy - theory, experiment and applications, Wiley, New Jersey 2005.
  • [137] K . Nitsch, Zastosowanie spektroskopii impedancyjnej w badaniach materiałów elektronicznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1999.
  • [138] L . Golonka, K. Nitsch, Thin Solid Films, 1981, 76, L25.
  • [139] B. Licznerski, K. Nitsch, B. Rząsa, Electrocomp. Sci. Technol., 1977, 4, 1.
  • [140] Y. Tsur, T.D. Dunbar, C.L. Randall, J. Electroceram., 2001 25.
  • [141] M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc., 2000, 20, 1997.
  • [142] B. Jiang, J.L. Peng, L.A. Bursill, T.L. Ren, P.L. Zhang, W.L. Zhong, Phys. B, 2000, 291, 203.
  • [143] N .G. Eror, T.M. Loehr, B.C. Cornilsen, Ferroelectrics, 1980, 28, 321.
  • [144] M. Mączka, J. Hanuza, W. Stręk, Nanomateriały, Wiadomości Chemiczne, Wrocław 2004.
  • [145] W.T. Carnall, Energy level structure and transition probabilities of the trivalent lanthanides in LaF3, Argonne, Illinois.
  • [146] E.W.J.L. Oomen, J. van Dongen, J. Non-Cryst Solids, 1989, 111, 205.
  • [147] J. Amami, D. Hreniak, Y. Guyot, R. Pązik, C. Goutadier, G. Boulon, M. Ayadi, W. Stręk, J. Lumin., 2006, 119-120, 383.
  • [148] F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, Opt. Mater., 2003, 24, 103.
  • [149] G.D. Mukherjee, A.S. Karandikar, V. Vijayakumar, B.K. Godwal, S.N. Achary, A.K. Tyagi, A. Lausi, E. Busetto, J. Phys. Chem. Solids, 2008, 69, 35.
  • [150] H. Kobayashi, J. Umemura, Y. Kazekami, N. Sakai, D. Alfe, Y. Ohishi, Y. Yoda, Phys. Rev. B, 2007, 76, 134108.
  • [151] B. Palosz, E. Grzanka, S. Gierlotka, S. Stel'makh, R. Pielaszek, W. Lojkowski, U. Bismayer, J. Neuefeind, H.-P. Weber, W. Palosz, Phase Transit., 2003, 76, 171.
  • [152] P . Lunkenheimer, T. Gotzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Solid State Chem., 2006, 179, 3965.
  • [153] N .F. Mott, E.A. Davies, Philos. Mag., 1970, 22, 903.
  • [154] N .F. Mott, E.A. Davis, R.A. Street, Philos. Mag., 1975, 23, 961.
  • [155] J.S. Capurso, W.A. Schultze, J. Am. Ceram. Soc., 1998, 81, 337.
  • [156] S . Chatterjee, B.D. Stojanovic, H.S. Maiti, Mater. Chem. Phys., 2003, 78, 702.
  • [157] J.G. Kim, W.P. Tai, K.J. Lee, W.S. Cho, Ceram. Int., 2004, 30, 2223.
  • [158] J. Qi, W. Chen, H. Wang, Y. Wang, L. Li, H.L.W. Chan, Sensor. Actuator. A, 2004, 116, 215.
  • [159] Y. Park, K. Cho, H-G. Kim, Mater. Res. Bull., 1997, 32, 1484.
  • [160] Y. Park, S.A. Song, Mater. Sci. Eng. B, 1997, 47, 28.
  • [161] M.H. Frey, D.A. Payne, Phys. Rev. B, 1996, 54, 3158.
  • [162] Y.G. Wang, W.L. Zhong, P.L. Zhang, Phys. Rev. B, 1995, 51, 8.
  • [163] X. Wang, X. Deng, H. Wen, L. Li, Appl. Phys. Lett., 2006, 89, 162902.
  • [164] X. Deng, X. Wang, H. Wen, L. Chen, L. Chen, L. Li, Appl. Phys. Lett., 2006, 88, 252905.
  • [165] N . Setter, R. Waser, Acta Mater., 2000, 48, 151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.