PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biorafinerie: ile w nich chemii?

Autorzy
Identyfikatory
Warianty tytułu
EN
Biorefineries: how much chemistry is there?
Języki publikacji
PL
Abstrakty
EN
A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today’s petroleum refineries, which produce multiple fuels and products from petroleum [12]. Three biorefinery systems are distinguished in research and development [11, 13]: the „whole-crop biorefinery”, the „lignocellulosic biorefinery” and the „green biorefinery”. Moreover, a concept of „two platform biorefinery” emerged [14], which includes the sugar platform as a basis for (bio) chemical conversion of biomass and the syngas (thermochemical) platform which convert biomass into synthesis gas. This review focuses on the recent developments of basic biorefinery technologies. The whole-crop biorefinery (Figure 1) produces chemicals from sugars by biochemical (Scheme 1) and chemical (Schemes 2–11) transformations, of which twelve compounds, selected by US National Renewable Energy Laboratory (NREL) [14] are classified as „block (or platform) chemicals” with the potential to be transformed into new families („trees”) of valuable substances. These compounds are: 1,4-diacids (succinic, fumaric, malic), 2,5-furandicarboxylic acid, 3-hydroxypropionic acid, aspartic acid , glutamic acid, glucaric acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. The lignocellulosic biorefinery (Figure 2) uses biomass consisting of cellulose, hemicelluloses and lignin – an abundant and cheap feedstock. Among the potential products of the „sugar platform” are: cellulosic ethanol and hydrogen obtained by biochemical routs, and furfural, 5-hydroxymethylfurfural, the platform chemicals, (Schemes 3–11), obtained by chemical synthesis. The „syngas platform” covers three basic processes: aqueous – phase reforming of sugar polyols [109–111, 113–115] and glycerol [116–118], fast pyrolysis of biomass [121–128] and gasification of biomass [121–125]. Aqueous – phase reforming of glucose and sorbitol produces hydrogen, whereas integrated with catalytic cascade processes allows to produce liquid biofuels, i.e., branched hydrocarbons and aromatic compounds used in gasoline or longer chain linear hydrocarbons in diesel and jet fuels. Fast pyrolysis produces bio-oil that can be upgraded to transportation fuels. Synthesis gas is produced in gasification processes and may be converted into methanol or liquid hydrocarbons (so-called synthetic „Biomass–To–Liquid”, BTL-fuel) [131–133]. Finally, green biorefinery (Figure 3) uses green (wet) biomass rich in juice and oil to obtain food and non food goods, and from the latter a huge number of chemicals „produced” by Nature, i.e., by the vast diversity of plant.
Rocznik
Strony
739--776
Opis fizyczny
bibliogr. 135 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Rio Declaration on Environment and Development, http://www.un.org/ documents/ga/conf151/aconf15126-1annex1.htm.
  • [2] http://www.un.org/esa/sustdev/dokuments/agenda21/index.htm.
  • [3] F.W. Lichtenthaler, [w:] Biorefineries - Industrial Processes and Products, Status Quo and Future Directions, B. Kamm, P.R. Gruber, M. Kamm (red.), Wiley-Verlag GmbH & Co. KGaA, Weinheim 2006, Vol. 2, s. 3-59; i piśmiennictwo tam cytowane.
  • [4] C.A. Carraher, Polymer Chemistry, 5th Edition, M. Dekker, Inc., New York 2000, s. 167-174.
  • [5] M.G. Peter, J. Macromol. Sci. Chem., 1995, 32, 629.
  • [6] H. Zoebelein, Dictionary of renevable resources, Wiley-VCH, Weinheim 2001.
  • [7] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411.
  • [8] P. Claus, H. Vogel, Chem. Eng. Technol., 2008, 31, 678.
  • [9] G.W. Huber, S. Iborra, A. Corma, Chem. Rev., 2006, 106, 4044; i piśmiennictwo tam cytowane.
  • [10] L. Petrus, M.A. Noordermeer, Green Chem., 2006, 8, 861.
  • [11] B. Kamm, M. Kamm, P.R. Gruber, S. Kromus, [w:] Biorefineries - Industrial Processes and Products, Status Quo and Future Directions, B. Kamm, P.R. Gruber, M. Kamm (red.), Wiley-Verlag GmbH & Co. KGaA, Weinheim, 2006, Vol. 1, s. 3-39; i piśmiennictwo tam cytowane.
  • [12] http://www.nrel.gov/biomass/biorefinery.html.
  • [13] B. Kamm, M. Kamm, Appl. Microbiol. Biotechnol., 2004, 64, 137.
  • [14] T. Verpy, G. Petersen (red.), Top Value Added Chemicals From Biomass, National Renevable Energy Labotatory, DOE/GO-102004-1992, 2004, www1.eere.energy.gov/biomass/pdfs/35523.pdf.
  • [15] A.S. Matlack, Introduction to Green Chemistry, M. Dekker, Inc., New York-Basel 2001, s. 241-244.
  • [16] B.A.Tokay, [w:] Ullmann's Encyklopedia of Industrial Chemistry, Sixth Completely Revised Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2003, Vol. 5, s. 303-309.
  • [17] S.K. Ritter, Chem. Eng. News, 2002, 80(26), 26.
  • [18] A. Duda, S. Penczek, Polimery, 2003, 48, 16.
  • [19] a) S.P. Crabtree, D.V. Tyers, M. Sharif, Patenr WO 2005051907 (2004); b) L. Velenzi, S.R. Dolhjz, Patent US 4663479 (1987).
  • [20] M. McCoy, Chem. Eng. News, 2003, 81(8), 18; 2003, 81(50), 17.
  • [21] M.I. Donnelly, C.S. Millard, D.P. Clark, M.J. Chen, J.W. Rathke, Appl. Biochem. Biotechnol. 1998, 70-72, 187.
  • [22] J.J. Bozell, [w:] Handbook of Green Chemistry and Technology, J. Clark, D. Macquarrie (red.), Blackwell Science Ltd., Oxford 2002, s. 338-365.
  • [23] C. Delhomme, D. Wuester-Botz, F.E. Kűhn, Green Chem., 2009, 11, 13.
  • [24] T. Wilke, K.D. Vorlop, Appl. Microbiol. Biotechnol., 2001, 56, 289.
  • [25] B. Cornils, P. Lappe, [w:] Ullmann's Encyclopedia of Industrrial Chemistry, Sixth Completely Revised Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2003, Vol. 10, s. 519-537.
  • [26] M. Ashiuchi, T. Kamei, H. Misono, J. Mol. Catal. B: Enyzmatic, 2003, 23, 101.
  • [27] D.E. Trimbur, G.M. Whited, O.V. Selifonova, Patent WO 0070057 (2000).
  • [28] S.K. Ritter, Chem. Eng. News, 2003, 81(26), 30.
  • [29] Z prasy zagranicznej, Przem. Chem., 2007, 86, 157.
  • [30] D. Arntz, Th. Haas, A. Műller, N. Wiegand, Chem. Eng. Tech., 1991, 63, 733.
  • [31] J. Wasilewski, I. Perkowski, J. Klimiec, Przem. Chem., 2003, 82, 645.
  • [32] a) B. Burczyk, Wiad. Chem., 2002, 56, 709; b) B. Burczyk, Zielona Chemia. Zarys, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2006, rozdz. 2.
  • [33] A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem., 2008, 10, 13.
  • [34] C.-H. Zhou, J.N. Beltramini, Y.-X. Fan, G.Q. Lu, Chem. Soc. Rev., 2008, 37, 527.
  • [35] A. Pagliaro, M. Rossi, The Future of Glicerol, RSC Publishing, Cambridge 2008.
  • [36] H. van Bekkum, H. Roper, A.G.J. Voragen (red.), Carbohydrates as Organic Raw Materials, VCH Pub., Weinheim 1996.
  • [37] K. Holmberg (red.), Novel Surfactants: Preparation, Applications and Biodegradability, Second Edition, Revised and Expanded, Surfactant Science Series, Vol. 114, M. Dekker, Inc., New York, Basel 2003.
  • [38] Y. Queneau, S. Jarosz, B. Lewandowski, J. Fitremann, Adv. Carbohydr. Chem. Biochem., 2007, 61, 217.
  • [39] Y. Queneau, S. Chambert, C. Besset, R. Cheaib, Carbohydr. Res., 2008, 343, 1999.
  • [40] A.W. Heinen, J.A. Peters, H. van Bekkum, Carbohydr. Res., 2001, 330, 381.
  • [41] B.F.M. Kuster, Starch/Stärke, 1990, 42, 314.
  • [42] L. Cottier, G. Descotes, Trends Heterocycl. Chem., 1991, 2, 233.
  • [43] P.E. Shaw, J.H. Tatum, R.E. Berry, Carbohydr. Res., 1967, 3, 266.
  • [44] Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Science, 2006, 312, 1933.
  • [45] J.N. Chheda, Y. Román-Leshkov, J.A. Dumesic, Green Chem., 2007, 9, 342.
  • [46] H. Zhao, E. Holladay, H. Brown, Z.C. Zhang, Science, 2007, 316, 1597.
  • [47] S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie, Green Chem., 2008, 10, 1280.
  • [48] A.Gandini, M.N. Belgacem, Prog. Polym. Sci., 1997, 22, 1203.
  • [49] A. Gandini, M.N. Belgacem, J. Polym. Environ., 2002, 10, 105.
  • [50] E. Taarning, I.S. Nielsen,K. Egeblad, R. Madsen, C.H. Christensen, ChemSusChem, 2008, 1, 75.
  • [51] Y. Román-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Nature, 2007, 447, 982.
  • [52] a) G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science, 2005, 308, 1446; b) J.N. Chheda, G.E.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed., 2007, 46, 7164; c) R.M. West, Z.Y. Liu, M. Peter, J.A. Dumesic, ChemSusChem, 2008, 1, 417.
  • [53] B. Kamm, M. Kamm, M. Schmidt, T. Hirth, M. Schulze, [w:] Biorefineries - Industrial Processes and Products. Status Quo and Future Directions, B. Kamm, P.R. Gruber, M. Kamm (red.), Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim 2006, Vol. 2, s. 105.
  • [54] J. Rogalski, Badania nad biotransformacją ligninocelulozy u grzyb białej zgnilizny drewna na przykładzie Phlebia radiata, Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin, 1992.
  • [55] A.S. Matlack, Introduction do Green Chemistry, M. Dekker, Inc., New York, Basel 2001, s. 370.
  • [56] Encyklopedia techniki. Chemia, Wydanie czwarte przerobione i rozszerzone, WNT, Warszawa, 1993, s. 109.
  • [57] V.C. Chang, B. Burr, M.T. Holtzapple, Appl. Biochem. Biotechnol., 1997, 63-65, 3.
  • [58] C.E. Wyman, B.E. Dale, R.T. Elandem, M. Holtzapple, M.R. Ladisch, Y.Y. Lee, Bioresour. Technol., 2005, 96, 1959.
  • [59] P. Kumar, D.M. Barrett, M.J. Dolwiche, P. Stoeve, Ind. Eng. Chem Res., 2009, 48, 3713.
  • [60] C. Divne, J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson, J.K.C. Knowles, T.T. Teeri, T.A. Jones, Nature, 1994, 265, 524.
  • [61] C.R. Waldron, C.A. Becker-Vallone, D.E. Eveleigh, Appl. Microbiol. Biotechnol., 1986, 24, 477.
  • [62] E.A. Johnson, M. Sakajoh, G. Halliwell, A. Madia, A.L. Demain, Appl. Environ. Microbiol., 1982, 43, 1125.
  • [63] D.K. Sandhu, S. Bawa, Appl. Biochem. Biotechnol., 1992, 34-35, 175.
  • [64] L.C. Webster, P.T. Anastas, T.C. Williamson, [w:] Green Chemistry: Designing Chemistry for the Emnvironment, P.T. Anastas, T.C. Williamson (red.), American Chemical Society, Washington D.C., 1996, 3. 198; i piśmiennictwo tam cytowane.
  • [65] O.V.S. Reddy, S.C. Bosappa, Biotechnol. Lett., 1996, 18, 1315.
  • [66] T.A. Brooks, L.O. Ingram, Biotechnol. Progr. 1995, 11, 619.
  • [67] A. Tullo M. McCoy, Chem. Eng. News, 2004, 82(7), 12.
  • [68] J.S. Tolan, [w:] Biorefineries - Industrial Processes and. Products. Status Quo and Future Directions, B. Kamm, P.R. Gruber, M. Kamm (red.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2006, Vol. 1, s. 193-208.
  • [69] M. McCoy, Chem. Eng. News, 2006, 84(19), 10.
  • [70] J. Larsen, M.Ø. Petersen, L. Thirup, H.W. Li, F.K. Iversen, Chem. Eng. Technol., 2008, 31, 765.
  • [71] a) H.G. Schlegel, Mikrobiologia ogna, Wydawnictwo Naukowe PWN, Warszawa 1996; b) N. Kosaric, Z. Duvnjak, A. Farkas, H. Sahm, S. Bringer-Meyer, O. Goebel, D. Mayer, [w:] Ullmann's Encyclopedia of Industrial Chemistry, Sixth Completely Revised Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinhei 2003, Vol. 12, s. 397-474.
  • [72] N.W.Y. Ho, Z. Chen, A.P. Brainard, M. Sedlak, [w:] Green Chemical Syntheses and Processes, P.T. Anastas, L.G. Heine, T.C. Williamson (red.), American Chemical Society, Washington D.C., 2000, s. 143-159.
  • [73] M. McCoy, Chem. Eng. News, 1998, 77(49), 29.
  • [74] A.S. Matlack, zob. [55, s. 241-244].
  • [75] B.A. Tokay, [w:] Ullmann's Encyclopedia of Industrial Chemistry, Sixth Completely Revised Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2003, Vol. 5, s. 303-309.
  • [76] Y. Ueno, H. Fukui, M. Goto, Environ. Sci. Technol., 2007, 41, 1413.
  • [77] S.K. Ritter, Chem. Eng. News, 2003, 81(39), 31.
  • [78] H. Liu, H.H.P. Fang, Water Sci. Technol. 2002, 47(1), 153.
  • [79] J. Karube, T. Matsunaga, S. Tsuni, S. Suzuki, Biochem. Biophys. Acta, 1976, 444, 338.
  • [80] H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi, Y. Takasaki, J. Biosci. Bioeng., 2001, 91, 58.
  • [81] M.A. Rachman, Y. Nakashimada, T. Kakizono, N. Nishio, Appl. Microbiol. Biotechnol., 1998, 49, 450.
  • [82] N. Kumar, D. Das, Process Biochem., 2000, 35, 589.
  • [83] B.E. Logan, S.-E. Oh, I.S. Kim, S. van Ginkel, Environ. Sci. Technol. 2002, 36, 2530.
  • [84] K. Nath, D. Das, Appl. Microbiol. Biotechnol., 2004, 65, 520.
  • [85] X. Ye, Y. Wang, R.C. Hopkins, M.W.W. Adams, B.R. Evans, J.R. Mielenz, Y.-H.P. Zhang, ChemSusChem, 2009, 2, 149.
  • [86] J. Beneman, Nature Biotechnol., 1996, 14, 1101.
  • [87] a) B.E. Logan, Environ. Sci. Technol., 2004, 38, 161A. b) B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Environ. Sci. Technol., 2008, 42, 8630
  • [88] R.M. Allen, H.P. Benneto, Appl. Biochem. Biotechnol., 1993, 39/40, 27.
  • [89] H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol., 2004, 38, 2281.
  • [90] W.J. McKillip, G. Collin, H. Höke, K.J. Zeitsch, [w:] Ullmann's Encyclopedia of Industrial Chemistry, Sixth Completely Revised Edition, Wiley-VCH Verlag, GmbH&Co. KGaA, Weinheim 2003, Vol. 15, s. 187-206.
  • [91] M. Kunz, A. Schwarz, J. Kowalczyk, Patent DE 19542287 (1997).
  • [92] J.A. Ferreira, C.O. Teixeira, Patent WO 2004108739 (2004).
  • [93] D.R. Svenson, J. Li, Patent US 2005203291 (2005)
  • [94] R.H.F. Beck, M. Elseviers, S.M.J. Coomans, Patent US 5714602 (1998).
  • [95] K. Schoenemann, Chem. Eng. Sci., 1957, 8, 161.
  • [96] M.J.Antal, T. Leesoboom, S.W. Mok, G.N. Richards, Carbohydr. Res., 1991, 217, 71.
  • [97] K.J. Zeitsch, The chemistry and technology of furfural and its many by-products, 1st. Ed., Elsevier, Amsterdam 2000, Vol. 13.
  • [98] A. Onda, T. Ochi, K. Yanagisawa, Green Chem., 2008, 10, 1033.
  • [99] A. Fukuoka, P.L. Dhepe, Angew. Chem. Int. Ed., 2006, 45, 5161.
  • [100] C. Luo, S. Wang, C.H. Liu, Angew. Chem. Int. Ed., 2007, 46, 7636.
  • [101] N. Li, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang, J.G. Chen, Angew. Chem. Int. Ed., 2008, 47, 8510.
  • [102] M.R. gen, Klaas, H. Schöne, ChemSusChem, 2009, 2, 127.
  • [103] M. Mascal, E. Nikitin, Angew. Chem. Int. Ed., 2008, 47, 7924,
  • [104] a) S.W. Fitzpatrick, Patent US 4897976 (1990); b) S.W. Fitzpatrick, Patent US 5608105 (1997.
  • [105] R. Dagani, Chem. Eng. News, 1999, 77(27), 30.
  • [106] J. Horwat, B. Klaic, B. Metelko, V. Sunjie, Tetrahedron Lett., 1968, 26, 2111.
  • [107] S.K. Ritter, Chem. Eng. News, 2006, 84(34), 47.
  • ]108] L. Moens, Patent US 5907058 (1999).
  • [109] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature, 2002, 418, 964.
  • [110] G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science, 2003, 300, 2075.
  • [111] R.R. Davda, J.A. Dumesic, Chem. Commun., 2004, 36.
  • [112] H. Jacobsen, Angew. Chem. Int. Ed., 2004, 43, 1912.
  • [113] G.W. Huber, R.D. Cortright, J.A. Dumesic, Angew. Chem. Int. Ed., 2004, 43, 1549.
  • ]114] S.K. Ritter, Chem. Eng. News, 2008, 86(46), 57.
  • [115] E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Sorrano-Ruiz, C.A. Gärtner, J.A. Dumesic, Science, 2008, 322, 417.
  • [116] G.A. Olah, Angew. Chem. Int. Ed., 2005, 44, 2636.
  • [117] R.R. Soares, D.A. Simonetti, J.A. Dumesic, Angew. Chem. Int. Ed., 2006, 45, 3982.
  • [118] D.A. Simonetti, J. Rass-Hansen, E.L. Kunkes, R.R. Soares, J.A. Dumesic, Green Chem., 2007, 9, 1073.
  • [119] A.V. Bridgwater, Appl. Catal. A, 1994, 116, 5.
  • [120] J. Lede, Ind. Eng. Chem. Res., 2000, 39, 893.
  • [121] D. Wang, S. Czernik, D. Montané, E. Chornet, Ind. Eng. Chem. Res., 1997, 36, 1507.
  • [122] S. Czernik, A.V. Bridgwater, Energy Fuels, 2004, 18, 590.
  • [123] D. Mohan, C.U. Pittman, Jr., P.H. Steele, Energy Fuels, 2006, 20, 848.
  • [124] L. Garcia, R. French, S. Czernik, E. Chornet, Appl. Catal. A, 2000, 201, 225
  • [125] M. Marquevich, S. Czernik, E. Chornet, D. Montane, Energy Fuels, 1999, 13, 1160.
  • [126] T.R. Carlson, T.P. Vispute, G.W. Huber, ChemSusChem, 2008, 1, 397.
  • [127] J.M. Moffatt, R.P. Overend, Biomass, 1985, 7, 99.
  • [128] E. Grzywa, J. Molenda, Technologia odstawowych syntez organicznych, Wydanie trzecie zmienione, WNT, Warszawa 2000, t. 1, s. 378-440.
  • [129] T.A. Milne, R.J. Evans, N. Abatzoglou, Biomass Gasifier Tars: Their Nature, Formation and Conversion, Report No NREL/Tp- 570-25337; National Renevable Energy Laboratory, Golden, CO, 1998; http://www.osti.gov/bridge.
  • [130] D.A. Dayton, Review of the Literature on Catalytic Biomass Tar Destruction, Report No NREL/ TP-510-3815; National Renewable Energy Laboratory, Golden, CO, 2002; http://www.osti.gov/bridge.
  • [131] M. Stocker, Angew. Chem. Int. Ed., 2008, 47, 9200.
  • [132] B. Kamm, Angew. Chem. Int. Ed., 2007, 46, 5056.
  • [133] a) Z prasy zagranicznej, Przem. Chem., 2007, 86, 235. b) Z prasy zagranicznej, Przem. Chem., 2009, 88, 35.
  • [134] T.E. Graedel, [w:] Handbook of Green Chemistry and Technology, C. Clark, D. Macquerrie (red.), Blackwell Science Ltd., Oxford, 2002, s. 56-61.
  • [135] a) P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, New York 1998; b) J.H. Clark, Green Chem., 1999, 1, 1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0020-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.