PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On generalized Pell numbers and their graph representations

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we give a generalization of the Pell numbers and the Pell- Lucas numbers and next we apply this concept for their graph representations. We shall show that the generalized Pell numbers and the Pell-Lucas numbers are equal to the total number of k-independent sets in special graphs.
Rocznik
Strony
169--175
Opis fizyczny
bibliogr. 10 poz.
Twórcy
autor
  • Rzeszow University of Technology, Faculty of Mathematics and Applied Physics ul.W.Pola 2,35-959 Rzeszów, Poland, iwloch@prz.edu.pl
Bibliografia
  • [1] S.B. Lin, C. Lin, Trees and forests with large and small independent indices, Chinese Journal of Mathematics, 23 (3) (1995) 199-210.
  • [2] X. Lv, A. Yu, The Merrifield-Simmons Indices and Hosoya Indices of Trees with k Pendant Vertices, Journal of Mathematical Chemistry, Springer, 1 41 (2007) 33-43.
  • [3] R.E. Merrifield, H.E. Simmons, Topological Methods in Chemistry, John Wiley & Sons, New York, 1989.
  • [4] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982) 16-21.
  • [5] H.G. Sanchez, R. Gomez Alza, (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings, Discussiones Mathematicae Graph Theory 27(2) (2007), 359-373.
  • [6] W. Szumny, A. W loch, I. W loch, On the existence and on the number of (k,l)-kernels in the lexicographic product of graphs, Discrete Mathematics, 308(2008), 4616-4624.
  • [7] S. Wagner, Extremal trees with respect to Hosoya Index and Merrifield-Simmons Index, MATCH Communications in Mathematical and in Computer Chemistry, 57 (2007) 221-233.
  • [8] E. Kilic, D. Tasci, The generalized Binet formula, reprezentation and sums of the generalized order-k Pell numbers, Taiwanese Journal of Mathematics, 10(6), (2006), 1661-1670.
  • [9] M. Kwaśnik, I. W loch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria, 55 (2000), 139-146.
  • [10] I. Włoch, Generalized Fibonacci polynomial of graph, Ars Combinatoria 68 (2003) 49-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0019-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.