Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X be an infinite dimensional complex Banach space and B(X) be the Banach algebra of all bounded linear operators on X. Zelazko [1] posed the following question: Is it possible that some maximal abelian subalgebra of B(X) is finite dimensional? Interestingly, he was able to show that there does exist an infinite dimensional closed subalgebra of B(X) with all but one maximal abelian subalgebras of dimension two. The aim of this note is to give a negative answer to the original question and prove that there does not exist a finite dimensional maximal commutative subalgebra of B(X) if dimX = ∞.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
95--98
Opis fizyczny
bibliogr. 1 poz.
Twórcy
autor
autor
- University of Ljubljana, IMFM Jadranska ul. 19, SI-1000 Ljubljana, Slovenia, janko.bracic@fmf.uni-lj.si
Bibliografia
- [1] W. Żelazko: Private communication.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0019-0024