PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithmic Approach to Devaney Chaos in Shift Spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the class of sofic shifts Devaney chaos is equivalent to topological transitivity. The aim of this paper is to study possibilities of detection of this phenomena when a right-resolving graph presentation of a sofic shift is given. We show that Devaney chaos detection is co-NP-hard problem and point out some possible improvements of algorithms known from the literature.
Wydawca
Rocznik
Strony
435--446
Opis fizyczny
bibliogr. 12 poz.
Twórcy
autor
  • Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krak´ow, Poland, oprocha@agh.edu.pl
Bibliografia
  • [1] N. Aoki and K. Hiraide. Topological theory of dynamical systems, volume 52 of North-HollandMathematical Library. North-Holland Publishing Co., Amsterdam, 1994. Recent advances.
  • [2] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney's definition of chaos. Amer. Math. Monthly, 99(4):332-334, 1992.
  • [3] M.-P. B'eal and D. Perrin. Symbolic dynamics and finite automata. In Handbook of formal languages, Vol. 2, pages 463-505. Springer, Berlin, 1997.
  • [4] D. Beauquier. Minimal automaton for a factorial, transitive, and rational language. Theoret. Comput. Sci., 67(1):65-73, 1989.
  • [5] M. Boyle, B. Kitchens, and B. Marcus. A note on minimal covers for sofic systems. Proc. Amer. Math. Soc., 95(3):403-411, 1985.
  • [6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. TheMIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge, MA, 1990.
  • [7] R. L. Devaney. An introduction to chaotic dynamical systems. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, second edition, 1989.
  • [8] N. Jonoska. Sofic shifts with synchronizing presentations. Theoret. Comput. Sci., 158(1-2):81-115, 1996.
  • [9] J. Kwapisz. Cocyclic subshifts. Math. Z., 234(2):255-290, 2000.
  • [10] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995.
  • [11] R. Mañé. Ergodic theory and differentiable dynamics, volume 8 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy.
  • [12] P. Oprocha and P.Wilczy´nski. Shift spaces and distributional chaos. Chaos Solitons Fractals, 31(2):347-355, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0018-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.