PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspektywy stosowania metody blokowej do syntezy modyfikowanych oligonukleotydów w roztworze i na stałym podłożu

Identyfikatory
Warianty tytułu
EN
Perspectives of dimeric building block approach to the synthesis of oligonucleotide analogs by the solid-phase synthesis and in solution
Języki publikacji
PL
Abstrakty
EN
Studies on properties and function of nucleic acids constitute the most fascinating cognitive area in biology, chemistry and medicine. Dynamic development of the required techniques, primarily Nuclear Magnetic Resonance (NMR) [4], or crystallization techniques, allowed to obtain a detailed information about structural diversity of complicated biological compounds, for example peptides and nucleic acids. The replacement of one of the nonbonding oxygens of internucleotide bond by sulfur, selenium, methyl or other functionalized alkyl groups creates a stereogenic centre at the modified phosphorus atom [16]. This arises a question about availability of stereoregular, P-defined analogues of DNA and RNA. Short synthetic oligonucleotides are indispensable tools in biomolecular and structural studies [5, 6]. They also have potential as therapeutics [13, 14] for manipulation of genes expression in a sequence specific manner. The block synthesis assuming incorporation of P-chiral, diastereomerically pure dimeric building blocks is attractive, reliable and patent for automated approach to the synthesis of "chimeric oligonucleotides", both in solution and on solid support [23]. The attention of researches turned toward chimeric constructs of 16 containing, in successive internucleotide positions, phosphates and methanephosphonates. Reynolds et al. [34] found that for therapeutic applications, only chimeric oligonucleotides 16 with incorporated RP-dinucleoside methanephosphonates had acceptable binding affinity towards complementary template of DNA and RNA. Isosequential chimeric oligomers, constructed either from diastereomeric mixtures of dinucleoside methanephosphonates, or from those with SP-configuration, form less stable duplexes with the same complementary RNA templates. The preparation of the aforementioned chimeras utilized a "dimeric building blocks" approach [23]. The corresponding dinucleoside (3',5')-methanephosphonates 17 were separated into diastereomers by chromatographic methods. After removal of the 3'-O-protecting group, the required RP-isomers were activated at the 3'-O-position, and used as such for condensation via the phosphoramidite method [25]. Attempts towards their P-epimerization and recycling have failed. Such situation was notwithstanding the requirement of a cost-effective synthesis of new potential therapeutics. Therefore, Stec et al. [36-38], and efforts were undertaken in the design of a cost-effective synthesis of RP-dinucleoside (3',5')-methanephosphonates 17.
Rocznik
Strony
63--83
Opis fizyczny
bibliogr. 44 poz., wykr.
Twórcy
autor
  • Zakład Biologii Strukturalnej, Katedra Endokrynologii Ogólnej, Uniwersytet Medyczny w Łodzi, ul. Żeligowskiego 7/9, 90-752 Łódź, gosia.matusiak@gmail.com
Bibliografia
  • [1] J.M. Berg, L. Stryer, J.L. Tymoczko. Biochemia, PWN, 2007, Wyd. 3 zmienione. Warszawa.
  • [2] R. Kolodner, Genes Dew, 1996,10, 1433.
  • [3] L.K. Lee, CM. Roth, Curr. Opin. Biotech., 2003, 14, 505.
  • [4] D.G. Gorenstein, Chem. Rev., 1994, 94, 1315.
  • [5] W.A.W. Lebedev, E. Wickstrom. Persp. Drug Disc. Des.. 1996, 4. 17.
  • [6] A.V. Lebedev. A. Frauendodorf. E.V. Vyazovkina, J.W. Engels, Tetrahedron, 1993. 49. 1043.
  • [4] K.V. Thiviyanathan el. at., Biochemistry, 2002, 41, 827.
  • [5] S. Olejniczak, M. Potrzebowski, L.A. Woźniak, Eur. J. Org. Chem., 2004, 1958.
  • [6] J.H.P. Chan, S. Lim, W.S.F. Wong, Clin. Exper. Pharm. Phys., 2006, 33, 533.
  • [7] R.G. Blasberg, J.G. Tjuvajev. J. Clin. Invest., 2003, 111, 1620.
  • [8] B. Wileken, V. Wiley, Pathology, 2008,40, 104.
  • [9] P.S. Miller Oligonucleoside methylphosphonate: Synthesis and Properties, [w:] C.A. Stein. A.M. Krieg (eds), John Wiley & Sons, Inc, New York 1998.
  • [10] W.J. Stec Biotechnologia, 1994, 4, 5.
  • [11] B. Larrouy, C. Błoński, C. Boiziau, M. Stuer, S. Moreau, D. Shire, J.J. Toulme Gene, 1992, 121, 189.
  • [12] T.P. Chendrimada, et. al. Nature, 2007, 447, 823.
  • [13] T.I. Novobrantseva. A. Akinc, A. Borodovsky. A. de Fougerolles. Curr. Opin. Drug Discov. Devel., 2008,11,217.
  • [14] R.K. Leung, P.A. Whittaker, Pharmacol. Ther.. 2005, 107. 222.
  • [15] N. Purdie, H.G. Brittain Analytical Applications of Circular Dichroism, Elsevier, Amsterdam 1994.
  • [16] W.A.W. Lebedev, E. Wickstrom, Persp. Drug Disc. Des.. 1996, 4. 17.
  • [17] S.Agrawal, Q.Zhao, Antisense & Nucleic Acid Drug Dev., 1998,8, 135.
  • [18] C.A. Stein, J.S. Cohen, Cancer Res., 1988, 48, 2659.
  • [19] M. Petersen, J. Wengel, Trends Biotech., 2003, 21. 74.
  • [20] R.R. Deshmukh, et. al, Org. Proc. Res. Dev., 2000, 4, 205.
  • [21] J.H.P Chan, S. Lim, W.S.F. Wong, Clin. Exper. Pharm. Phys., 2006, 33, 533.
  • [22] Methods in Molecular Biology, Vol. 26: Protocols for Oligomwleolide Conjugates, ed. S. Agraval Copyright 1994 Humana Press Inc., Totowa, NJ.
  • [23] J. Pyzowski, L.A. Wozniak. W.J. Stec, Org. Lett., 2000, 2, 771.
  • [24] C.B. Reese, Org. Biomol. Chem., 2005. 3. 3851.
  • [25] M.H. Caruthers, Science. 1985,230.281.
  • [26] J. Ott, F. Eckstein, Nucl. Acids Res., 1984, 12, 9137.
  • [27] P.J. Garegg, I. Lindh, T. Regberg. J. Stawitiski, R. Stromberg, C. Henrichson, Tetrahedron Lett., 1986,27,4051.
  • [28] J. Stawinski, A. Kraszewski, Acta Biochimica Polonica, 1998, 45. 907.
  • [29] T. Wada. Y. Sato, F. Honda, S. Kawahara, M. Sekine, J. Am. Chem. Soc., 1997, 119, 12710.
  • [30] P.P. Kung. R.A. Jones, Tetrahedron Lett., 1992, 33, 5869.
  • [31] K.M. Kosikov, A.A. Gorin, X.-J. Lu, W.K. Olson, G.S. Manning, J. Am. Chem. Soc., 2002, 124, 4838.
  • [32] C.G. Baumann, S.B. Smith, V.A. Bloomfield, C. Bustamante, Proc. Natl. Acad. Sci. USA, 1997, 94. 6185.
  • [33] C.B. Reese, K.H. Richards. Tetrahedron Lett, 1985, 26, 2245.
  • [34] M.A. Reynolds, et. al.. Nucleic Acids Res., 1996, 24, 4584.
  • [35] M. Bukowiecka-Matusiak, L.A. Woźniak, Na pograniczu chemii i biologii, 2006, 15, 55.
  • [36] L.A. Wozniak, M. Bukowiecka-Matusiak, M. Góra, W.J. Stec, Synlett, 2006, 1331.
  • [37] W.J. Stec, L.A. Wozniak, J. Pyzowski, W. Niewiarowski, Antisense & Nucleic Acid Drug Dev., 1997,7,381.
  • [38] W.J. Stec Ace. Chem. Res., 1983,16, 411.
  • [39] L.A. Wozniak, W.J. Stec. Tetrahedron Lett, 1999, 40, 2637.
  • [40] F. Seela, U. Kretschmer, J. Org. Chem., 1991, 56, 3861.
  • [41] M. Sobkowski, J. Jankowska, A. Kraszewski, J. Stawinski, Nucleosides Nucleotides Nucleic Acids. 2005,24. 1469.
  • [42] KJ. Padiya, M.M. Salunkhe, Bioorg. Med. Chem., 2002. 8, 337.
  • [43] M. Bollmark Doctoral Dissertation 2001, Department of Organie Chemistry, Arhenius Laboratory, Stockholm University.
  • [44] L.A. Wozniak, M. Bukowiecka-Matusiak, I. Burzyńska-Pędziwiatr, W.J. Stec, Tetrahedron Lett., w druku
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0017-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.