PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristic of granulated activated sludge fed with glycerin fraction from biodiesel production

Identyfikatory
Warianty tytułu
PL
Charakterystyka osadu czynnego granulowanego hodowanego na frakcji glicerynowej z produkcji biodiesla
Języki publikacji
EN
Abstrakty
EN
In the presented research glycerin fraction from biodiesel industry was used for granulated aerobic activated sludge production in a typical sequencing batch reactor (h/d equal 2.1). After 7 weeks of operation, granulated activated sludge with SVI at the level of 40-50 cm^3g^-1 was obtained. At organic compounds load of 1.43 š 0.1 mg COD-mg VSS^-1d ^-1, the efficiency of carbon removal was 94.14 š 2.7% and most of the introduced COD was removed during the first 2-3 hours of aeration. The sieve analysis revealed that 60% (w/w) of biomass consisted of particles with a diameter in the range of 4-8 mm. A free settling test procedure proved that granules with a diameter between 2-4 mm were numerically most abundant in biomass (32.3%) and thai the settling volume, mass and Reynolds number values significantly (p < 0.05) increased parallel with increasing granule diameter. Adverse tendency was observed for the mean effective, buoyant density of a granule in a liquid.
PL
Osad czynny granulowany hodowano z wykorzystaniem frakcji glicerynowej powstałej przy produkcji biodiesla. Po 7 tygodniach hodowli w warunkach tlenowych w reaktorze SBR (h/d - 2,1) uzyskano granulowany osad czynny charakteryzujący się indeksem osadu na poziomie 40-50 cm^3-g^-1. W warunkach hodowli przy obciążeniu osadu czynnego ładunkiem zanieczyszczeń na poziomie 1,43 i 0,1 g ChZT-g sm-d^-1, efektywność usuwania związków węglowych wyniosła 94,14 š 2,7%. Analiza sitowa wykazała, że około 60% masy osadu czynnego stanowiły granule o średnicy 4-8 mm. Równolegle na podstawie testu swobodnego opadania wyznaczono ilościowy udział granul o różnych średnicach w osadzie czynnym granulowanym. Stwierdzono, że granule o średnicy 2-5 mm stanowiły najliczniejszą trakcje tj. około 32% wszystkich granul osadu czynnego. Prędkości opadania, masy oraz wartości liczby Reynoldsa dla granul znacząco wzrastały (p<0.05) wraz ze wzrostem ich średnicy. Obserwowano, że wraz. ze spadkiem średnicy granul następował wzrost ich średniej gęstości w cieczy.
Rocznik
Strony
41--52
Opis fizyczny
bibliogr. 29 poz., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology ul. Słoneczna 45G, 10-957 Olsztyn-Kortowo, Poland, agnieszka.cydzik@uwm.edu.pl
Bibliografia
  • [1] Andrettola G., I.. Baldassarre, C. Collivignarelli, R. Pedrazzani, I'. Principi, C. Sorini, G. Ziglio: A comparison among different methods for evaluating the biomass activity in activated sludge systems: preliminary results. Water Sci. Tech., 46, 413-417 (2002).
  • [2] APIHA: Standard methods for the examination of water and wastewaler, 18th edition APHA, AWWA and WEF, Washington DC, USA 1992.
  • [3] Arrojo B., A. Mosqucra-Corral, J.M. Garrido, K.R. Mendez: Aerobic granulation with industrial waste-water in sequencing batch reactors. Water Res., 38, 3389-3399 (2004).
  • [4] Bernat K., I. Wojnowska-Baryla: Influecne of VFA/TKN ratio in wastewater on the effectiveness of nitrification, Pol. .J. Nat. Sci., 21, 741-753 (2006).
  • [5] Beun J.J., A. Hendriks, M.C.M. van Loosdrecht, F.. Morgenroth, P.A. Wilderer, J.J. Heijnen: Aerobic granulation in a sequencing batch reactor. Water Res., 10, 2283-2290 (1999).
  • [6] Chu C.P., D. J. Lee: Multiscale structures of biological floes, Chan. Hng. Sci., 59, 1875-1883 (2004).
  • [7] Coehlo M.A.Z., C. Russo, O.Q.F. Araujo: Optimization of sequencing batch reactor for biological nitrogen removal. Water Res., 34, 2809-2817 (2000).
  • [8] European Standard EN 14214:2003/AC:2007: Automotive fuels - Fatty acid methyl esters (FAME) for diesel engines - Requirements and test methods.
  • [9] Hailei W., Y. Guangli, L. Guoshcng, P. Feng: A new way to cultivate aerobic granules in the process of pupermaking wastewater treatment, Bioch. Eing. .1., 28. 99 - 103 (2006).
  • [10] Ivanov V., X.-H. Wang, S. T.-L. Tay, J-H. Tay: Bioaugmenlation and enhanced formation of microbiological granules used in aerobic wastewater treatment, Appl. Microbiol. Biotechnol., 70, 374 -381 (2006).
  • [11] Jiang H.L., J.H Tay, S.T.L. Tay: Aggregation of immobilized activated sludge cells into aerobically grown microbiol granules for the aerobic biodegradation of phenol, Lett. Appl. Microbiol., 35, 439-445 (2002).
  • [12] Lee D.J., G.W. Chen, Y.C Liao, C.C. Hsieh: On the free-settling test for estimating activated sludge floc density, Water Res., 30, 541 - 550 (1996).
  • [13] Li D.H., J.J. Ganczarczvk: Fracial geometry of particle aggregates generated in water and wastewater treatment processes, Environ. Sci. Tech.. 23, 1385 - 1389 (1989).
  • [14] Li Z.H., T. Kuba, T. Ksuda: Aerobic granular sludge: a promising technology for decentralized wastewater treatment. Water Sci. Tech., 53, 79 85 (2006).
  • [15] Liu Y., .J-H. Tay: State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22, 533 - 563 (2004).
  • [16] Liu Y.,Z.-W. Wang, L. Qin, Y.-Q. Liu, .J-H. Tay: Selection pressure-driven aerobic granulation in sequencing batch reactor, Appl. Microbiol. Biotechnol.. 67. 26 - 32 (2005).
  • [17] Meher L.C.,D. Vidya Sagar, S.N. Naik : Technical aspects of biodiesel production by transesterfication a review. Renew. Sum. Energ. Rev. Renew. Sust. Energ. Rev., 10, 248-268 (2006).
  • [18] MoyB.Y.-P., J.-H. Tay, S.-K. Toh. Y. Liu, S.T.-L. Tay: High organic loading influences the physical characteristics of aerobic sludge granules, Lett. Appl. Microbiol., 34, 407 412 (2002).
  • [19] Pereboom J.H.F.: Size distribution model for methanogenic granules from full scale UASB and IC reactors, Water Sci. Tech., 30, 211 - 221 (1994).
  • [20] Qin I... Y. Liu, .J-H. Tay: Effect of settling time on aerobic granulation in sequencing hatch reactor. Bioch. Eng. ,J. 21,47 - 52 (2004).
  • [21] Reeuwijk van I.P.: Procedures for soil analysis, 6th edn., International Soil Reference and Information Centre, FAO, Wageningen 2002.
  • [22] Schwarzenbeck N., J.M. Borges, P.A. Wilderer: Treatment of diary effluents in an aerobic granular sludge sequencing batch reactor, Appl. Microbiol. Biotechnol., 66, 711 - 718 (2005).
  • [23] Smoczyński L., R. Wardzyńska: Study on macroscopic aggregation of silica suspensions and sewage, J. Colloid Interfac. Sci., 183, 309-314 (1996).
  • [24] Snidaro D., F. Tartarian, F. Jorand, J.-Y. Bottero, J.-C. Block, J. Maneni: Characterization of activated sludge floes structure, Water Sci. Tech., 36, 313 - 320 (1997).
  • [25] Tay J.-H., Q.S. Liu, Y. Liu: Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor, J. Appl. Microbiol., 91, 168-175 (2001).
  • [26] Tay ,J-H., Q.-S. Liu, Y. Liu: The effects of shear force on the formation, structure and metabolism of aerobic granules, Appl. Microbiol. Biotechnol., 57, 227-233 (2001).
  • [27] Toh S.K.. J.H. Tay, B.Y.P. Moy, V. Ivanov, S.T.L. Tay: Size-effect on the physical characteristics of the aerobic granule in a SBR, Appl. Microbiol. Biotechnol., 60, 687- 695 (2003).
  • [28] Wang Q., D. Guocheng, J. Chen: Aerobic granular sludge cultivated under the selective pressure as a driving force, Process Biochem., 39, 557-563 (2004).
  • [29] Wu R.M., D..J. Lee.T.D. Waite, J. Guan: Multilevel structure of sludge floes, J. Colloid Interfac. Sci., 252. 383-392 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0017-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.