PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processes in Systems with Limited Resources in the Context of Non-extensive Thermodynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a preliminary analysis of the system behavior that works far from the thermodynamical equilibrium states in the environment with limited resources. The examples of such systems are the real computer systems. Nowadays in such systems the runoff characteristic of the information flow is very turbulent in contradiction to the current existing laminar models. These systems work under constant overload, which means a permanent thermodynamical non-equilibrium (from the thermodynamical point of view). For such a situation the classical approach to their modeling is still based on Boltzmann-Gibbs (BG) thermodynamics, which is proper only for systems that are in equilibrium state (sometimes called thermostatic) or very close to it. The changing number of tasks N in such systems and the limited resources K of the environment cause its chaotic behavior and generate the dependencies that have got a long-term property. Such processes degrade the system performance X and elongate the response time R; in other words degrade the Quality of Service (QoS). To understand the whole behavior of such systems one needs a proper thermodynamical basis that seems to be the Tsallis formula of the non-extensive entropy.
Wydawca
Rocznik
Strony
455--464
Opis fizyczny
bibliogr. 13 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] von Bertalanfy, L.: General System Theory. Foundations, Development, Applications. New York, 1968.
  • [2] Grabowski, F., Strzałka, D.: Dynamic behavior of simple insertion sort algorithm. Fundamenta Informaticae 71, IOS Press, pp. 155-165, 2006.
  • [3] Prigogine, I., Stengers, I.: Order out of Chaos: Man's new dialogue with nature, Flamingo, 1984.
  • [4] Hurst, H., E.: Long-termStorage of Reservoirs, Transactions of the American Society of Civil Engineers, 116, 1951.
  • [5] Watts, D., J., Strogatz, S., H.: Collective dynamics of "small world" networks, Nature, 393, 440-442, 1988.
  • [6] Liu, M., Zhang, H., Trajković, L.: Stroboscopic model and bifurcations in TCP/RED. ISCAS (3), pp. 2060-2063, 2005.
  • [7] Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics, Journal Statistical Physics, 52, p.479, 1988.
  • [8] Kuhn, T.: The Structure of Scientific Revolutions, University of Chicago Press, 1962.
  • [9] Tsallis, C.: Nonextensive Statistics: Theoretical, Experimental and Computational Evidences and Connections, Brazilian Journal of Physics, vol. 29, Issue 1, pp. 01-35, 1999.
  • [10] Lazowski, E., Zahorjan, J., Graham G., Sevcik K.: Quantitative System Performance, Computer System Analysis Using Queueing Network Models, Prentice-Hall, 1984.
  • [11] Richardson, G., P.: Loop Polarity, Loop Dominance, and the Concept of Dominant Polarity, System Dynamics Conference, Oslo, Norway, 1984; System Dynamics Review 11, 1, 1995.
  • [12] Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals-New Frontiers of Science, Springer-Verlag, Berlin and Heidelberg, 1992.
  • [13] Tsallis, C., Plastino, A. R. and Zhengs, W.-M.: Power-law Sensitivity to Initial Conditions-New Entropic Representation, Chaos, Solitons & Fractals, Vol. 8, No. 6, pp. 885-889, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0016-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.