PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy Symmetry Based Real-Coded Genetic Clustering Technique for Automatic Pixel Classification in Remote Sensing Imagery

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of classifying an image into different homogeneous regions is viewed as the task of clustering the pixels in the intensity space. In particular, satellite images contain landcover types some of which cover significantly large areas, while some (e.g., bridges and roads) occupy relatively much smaller regions. Automatically detecting regions or clusters of such widely varying sizes presents a challenging task. In this paper, a newly developed real-coded variable string length genetic fuzzy clustering technique with a new point symmetry distance is used for this purpose. The proposed algorithm is capable of automatically determining the number of segments present in an image. Here assignment of pixels to different clusters is done based on the point symmetry based distance rather than the Euclidean distance. The cluster centers are encoded in the chromosomes, and a newly developed fuzzy point symmetry distance based cluster validity index, FSym-index, is used as a measure of the validity of the corresponding partition. This validity index is able to correctly indicate presence of clusters of different sizes and shapes as long as they are internally symmetrical. The space and time complexities of the proposed algorithm are also derived. The effectiveness of the proposed technique is first demonstrated in identifying two small objects from a large background from an artificially generated image and then in identifying different landcover regions in remote sensing imagery. Results are compared with those obtained using the well known fuzzy C-means algorithm both qualitatively and quantitatively.
Wydawca
Rocznik
Strony
471--492
Opis fizyczny
bibliogr. 19 poz.,fot.,
Twórcy
autor
Bibliografia
  • [1] Anderberg, M. R.: Computational Geometry: Algorithms and Applications, Springer, 2000.
  • [2] Attneave, E: Symmetry Information and Memory for Pattern, Am. J. Psychology, 68, 1995, 209-222.
  • [3] Bandyopadhyay, S.: Satellite Image Classification Using Genetically Guided Fuzzy Clustering with Spatial Information, International Journal of Remote Sensing, 26(3), 2005, 579-593.
  • [4] Sanghamitra Bandyopadhyay and Sriparna Saha, GAPS: A New Symmetry Based Genetic Clustering Technique, Pattern Recognition Volume 40, Issue 12, December 2007, Pages 3430-3451.
  • [5] Ben-Hur, A., Guyon, I.: Detecting Stable Clusters using Principal Component Analysis in Methods in Molecular Biology, Humana press, 2003.
  • [6] Bensaid, A. M., Hall, L. O., Bezdek, J. C, Clarke, L. P., Silbiger, M. L., Arrington, J. A., Murtagh, R. F.: Validity-Guided (Re)Clustering with Applications to Image Segmentation, IEEE Transactions Fuzzy Systs., 4(2), 1996, 112-123.
  • [7] Bentley, J. L., Weide, B. W., Yao, A. C: Optimal expected-time algorithms for closest point problems, ACM Transactions on Mathematical Software, 6(4), 1980, 563-580.
  • [8] Bezdek, J. C: Fuzzy Mathematics in Pattern Classification, Ph.D. Thesis, 1973.
  • [9] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.
  • [10] Chou, C. H., Su, M. C, Lai, E.: Symmetry as A new Measure for Cluster Validity, in: 2nd WSEAS Int. Conf. on Scientific Computation and Soft Computing, Crete, Greece, 2002,209-213.
  • [11] Friedman, J. H., Bently, J. L., Finkel, R. A.: An Algorithm for finding best matches in logarithmic expected time, ACM Transactions on Mathematical Software, 3(3), 1977, 209-226.
  • [12] Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), 2002, 1650-1654.
  • [13] Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification, IEEE Transactions Geoscience and Remote Sensing, 41(5), 2003, 1075- 1081.
  • [14] Mount, D.M., Arya, S.: ANN: A Library for Approximate Nearest Neighbor Searching, 2005, Http://www.cs.umd.edu/~mount/ANN.
  • [15] Pal, S. K., Bandyopadhyay, S., Murthy, C. A.: Genetic Classifiers for Remotely Sensed Images : Comparison with Standard Methods, International Journal of Remote Sensing, 22, 2001, 2545-2569.
  • [16] Richards, J. A.: Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag, New York, 1993.
  • [17] Srinivas, M., Patnaik, L.: Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms, IEEE Transactions on Systems, Man and Cybernatics, 24(4), April, 1994, 656-667.
  • [18] Su, M.-C, Chou, C.-H.: A Modified Version of the K-means Algorithm with a Distance Based on Cluster Symmetry, IEEE Transactions Pattern Analysis and Machine Intelligence, 23(6), 2001, 674-680.
  • [19] Xie, X. L., Beni, G.: A Validity Measure for Fuzzy Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 1991, 841-847.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0015-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.