PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Hierarchy of Computably Enumerable Reals

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computably enumerable (c.e., for short) reals are the limits of computable increasing sequences of rational numbers. In this paper we introduce the notion of h-bounded c.e. reals by restricting numbers of big jumps in the sequences by the function h and shown an Ershov-style hierarchy of h-bounded c.e. reals which holds even in the sense of Turing degrees. To explore the possible hierarchy of c.e. sets, we look at the h-initially bounded computable sets which restricts number of the changes of the initial segments. This, however, does not lead to an Ershov-style hierarchy. Finally we show a computability gap between computable reals and the strongly c.e. reals, that is, a strongly c.e. real cannot be approximated by a computable increasing sequence of rational numbers whose big jump numbers are bounded by a constant unless it is computable.
Wydawca
Rocznik
Strony
219--230
Opis fizyczny
bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, University of Cincinnati, Cincinnati, OH 45221, USA, xizhong@uc.edu
Bibliografia
  • [1] B. S. Cooper. Degrees of I)nsolvability. Ph.D thesis, Leicester University, Leicester, England, 1971.
  • [2] R. G. Downey. Some computability-theoretic aspects of reals and randomness. In The Notre Dame lectures, volume 18 of Lect. Notes Log., pages 97-147. Assoc. Symbol. Logic, Urbana, IL, 2005.
  • [3] R. G. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer-Verlag, 200? monograph to be published.
  • [4] Y. L. Ershov. A certain hierarchy of sets, i, ii, iii. (Russian). Algebra i Logika, 7(l):47-73, 1968;7(4): 15-47, 1968; 9:34-51,1970.
  • [5] E. M. Gold. Limiting recursion. J. Symbolic Logic, 30:28-48, 1965.
  • [6] H. Putnam. Trial and error predicates and the solution to a problem of Mostowski. J. Symbolic Logic, 30:49-57,1965.
  • [7] R. Rettinger and X. Zheng. A hierarchy of Turing degrees of divergence bounded computable real numbers. J. Complexity, 22(6):818-826,2006.
  • [8] R. I. Soare. Cohesive sets and recursively enumerable Dedekind cuts. Pacific J. Math., 31:215-231,1969.
  • [9] R. I. Soare. Recursion theory and Dedekind cuts. Trans. Amer. Math. Soc, 140:271-294,1969.
  • [10] R. I. Soare. Recursively enumerable sets and degrees. A study of computable functions and computably generated sets. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.
  • [11] K. Weihrauch. Computable Analysis, An Introduction. Springer, Berlin Heidelberg, 2000.
  • [12] X.Zheng. Classification of the computably approximable real numbers. Theory of Computing Systems, (to appear).
  • [13] X. Zheng. Recursive approximability of real numbers. Mathematical Logic Quarterly, 48(Suppl. 1):131-156, 2002.
  • [14] X. Zheng. Computability Theory of Real Numbers. Habilitation's thesis, BTU Cottbus, Germany, Feb., 2005.
  • [15] X. Zheng and R. Rettinger. Weak computability and representation of reals. Mathematical Logic Quarterly, 50(4/5):431-442,2004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0015-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.