PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tense Operators on MV-Algebras and Łukasiewicz-Moisil Algebras

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce tense LMn-algebras and tense MV-algebras as algebraic structures for some tense many-valued logics. A representation theorem for tense LMn-algebras is proved and the polynomial equivalence between tense LM3-algebras (resp. tense LM4-algebras) and tense MV3-algebras (resp. tense MV4-algebras) is established. We study the pairs of dually-conjugated operations on MV-algebras and we use their properties in order to investigate how the axioms of tense operators are preserved by the Dedekind-MacNeille completion of an Archimedean MV-algebra. A tense many-valued propositional calculus is developed and a completeness theorem is proved.
Wydawca
Rocznik
Strony
379--408
Opis fizyczny
bibliogr. 42 poz.
Twórcy
autor
  • Faculty of Mathematics and Informatics, University of Bucharest, Str. Academiei 14, Bucharest, Romania, didenisuca@yahoo.com
Bibliografia
  • [1] R.N. Ball, G.Georgescu, I.Leustean, Cauchy completions of MV -algebras, Algebra Universalis, 47, 2002, 367-407.
  • [2] L.P. Belluce, Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math., 38, 1986, 1356-1379.
  • [3] V. Boicescu, Contributions to the study of Łukasiewicz algebras, Ph. D. Thesis, Univ. of Bucharest, 1984.
  • [4] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Łukasiewicz-Moisil algebras, North-Holland, 1991.
  • [5] J. Burges, Basic tense logic, In: D.M. Gabbay, F. Guenther (Eds), Handbook of Philosophical Logic, vol.II, D. Reidel Publ. Comp., 1984, 89-133.
  • [6] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, 1958, 467-490.
  • [7] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc., 87, 1959, 74-90.
  • [8] C. Chirita, Three-valued temporal logic, Annals of the Bucharest University, LIV, 2005, 75-90.
  • [9] R. Cignoli, Algebras de Moisil de orden n, Ph. D. Thesis, Univ. National del Sur, Bahia Blanca, 1969.
  • [10] R. Cignoli, Moisil algebras, Notas de Logica Matematica, Inst. Nat., Univ. National del Sur, Bahia-Blanca, 27,1970.
  • [11] R. Cignoli, Some algebraic aspects of many-valued logics, In: A. I. Arruda, N. C. A. da Costa and A. M. Sette (eds), Proc. Third Brasilian Conference on Math. Logic, Soc. Brasiliera de Logica, Sao-Paolo, 1980.
  • [12] R. Cignoli, Proper n-valued Łukasiewicz algebras as S-algebras of Łukasiewicz n-valued propositional calculi, Studia Logica, 41, 1982, 3-16.
  • [13] R. Cignoli, I. D'Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Acad. Publ., Dordrecht, 2000.
  • [14] P. F. Conrad, J. Harvey, W. C. Holland, The Hahn embedding theorem for lattice-ordered groups, Trans. Amer. Math. Soc., 108, 1963, 143-169.
  • [15] A. DiNola, MV -algebras in the treatment of uncertainty, In: P. Löwen, E. Ronbens (Eds), Proc. of the international IFSA Congress, Bruxelles, 1991, Kluwer, 1993, 123-131.
  • [16] D. M. Gabbay, Model theory for tense logic and decidability results for non-classical logics, Ann. Math. Logic, 8, 1975, 185-295.
  • [17] G. Georgescu, C. Vraciu, On the characterization of centered Łukasiewicz algebras, J. Algebra, 16, 1970, 486-495.
  • [18] G. Georgescu, A representation theorem for tense polyadic algebras, Mathematica, Cluj, Tome 21, 2, 1979, 131-138.
  • [19] G. Georgescu, A. Iorgulescu, I. Leustean, Monadic and closure MV -algebras, Multi. Val.-Logic, 3, 1998, 235-257.
  • [20] G. Georgescu, A. Popescu, A common generalization for MV -algebras and Łukasiewicz-Moisil algebras, Archiv. Math. Logic, 45, 2006, 947-981.
  • [21] S. Givant,Y. Venema, The preservation of Sahlqvist equations in completions of Boolean algebras with operators, Algebra Universalis, 41, 1999, 47-84.
  • [22] R. S. Grigolia, Algebraic analysis of Łukasiewicz-Tarski logical systems, In: R. Wójcicki, G. Malinowski (Eds), Selected Papers on Łukasiewicz Sentential Calculi, Osolineum,Wroclaw, 1977, 81-92.
  • [23] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
  • [24] A. Iorgulescu, Connections between MVn-algebras and n-valued Łukasiewicz-Moisil algebras, Part I, Discrete Math., 181, 1998, 155-177.
  • [25] L. Iturrioz, Łukasiewicz and symmetrical Heyting algebras, Z. f.Math. Logik und Grundlagen d. Math., b23, 1977, 131-138.
  • [26] T. Kowalski, Varieties of tense algebras, Rep. Math. Logic, 32, 1998, 53-95.
  • [27] F. Kröger, Temporal logic of programs, Springer-Verlag, 1987.
  • [28] E. J. Lemmon, Algebraic semantics for modal logic, J. Symb. Logic, 31, 1966, 46-65, 191-218.
  • [29] I. Leustean, A unifying framework for Łukasiewicz-Moisil algebras, MV-algebras and Post algebras, submitted.
  • [30] J. Łukasiewicz, A. Tarski, Untersuchungen über den Aussagenkalkul, C.R. Séances Soc. Lettres Varsovie, 23, 1930, 30-50
  • [31] Gr. C. Moisil, Recherches sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy, 26, 1940, 431-466.
  • [32] Gr. C. Moisil, Logique modale, Disquis. Math. Phys., 2, 1942 (reproduced in [33], 341-431).
  • [33] Gr. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • [34] D.Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Func. Analysis, 65, 1986, 15-63.
  • [35] D. Mundici, The C*-algebras of three-valued logic, In: R. Ferro, C. Bonotto, C. Valentini, A. Zanardo (Eds), Logic Colloquium'88, Elsevier Science Publ. B. V. (North-Holland), 61-77.
  • [36] A. Popescu, Łukasiewicz-Moisil relation algebras, Studia Logica, 81, 2005, 167-189.
  • [37] A. Popescu, Many-valued relation algebras, Algebra Universalis, 53, 2005, 73-108.
  • [38] A. Popescu, Tones of truth, submitted.
  • [39] E. Radu, L'oeuvre de Gr. C. Moisil en logique mathématique, I, II, Rev. Roum. Math. Pures Appl., 23, 1978, 463-477, 605,610.
  • [40] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland Publ., Amsterdam, Polish Scientific Publ.,Warszawa, 1974.
  • [41] D. Schwartz, PolyadicMV -algebras, Zeitsch. f. Math. Logik und Grundlagen d. Math., 26, 1980, 561-564.
  • [42] R. Wójcicki, G. Malinowski(Eds.), Selected papers on Łukasiewicz sentential calculi, Ossolineum,Wrocław andWarsaw, 1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0014-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.