PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental factors affecting the biomethanization process

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the most important factors controlling the process of methanogenesis in the biomethanization technology. It discusses the operational regimes of temperature as well as pH, C/N ratio, the necessity for micronutrients and sensitivity to a number of toxic compounds. Components with an inhibitory effect are characterized as biostatic compounds (ammonia, VFAs, hydrogen sulfide and salinity-inducing substances) and biocidal substances (such as surfactants and Pharmaceuticals). The threshold limits of the compounds in question securing the system against disturbances are introduced, as well as the measures counteracting inhibition. Some ways of overcoming the negative impact of environmental factors on the system are presented, including co-fermentation, supplementation of nutrients, removal of ammonia and hydrogen sulfide by different methods and acclimatization of methanogens to inhibitory substances.
Rocznik
Strony
265--279
Opis fizyczny
bibliogr. 81 poz., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
Bibliografia
  • [1] Ahring B.K., Sandberg M. and Angelidaki 1. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology 41, 559-565.
  • [2] Angelidaki I. and Ahring B.K. (1993). Thermophilic anaerobic digestion of livestock waste: the effect of ammonia Applied Microbiology and Biotechnology 38(4), 560-564.
  • [3] Angelidaki 1. and Ahring B.K. (1994). Anaerobic digestion of manure at different ammonia loads: effect of temperature. Water Research 28(3), 727-731.
  • [4] Angelidaki 1., Mogensen A.S. and Ahring B.K. (2000). Degradation of organic contaminants found in organic waste. Biodegradation 11, 377-383.
  • [5] Angelidaki I. and Sanders W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Biotechnology 3(2), 117-129.
  • [6] Angelidaki 1., Cui J., Chen X. and Kaparaju P. (2006). Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors. Environmental Technology 27, 855-861.
  • [7] Baleux B.A. and Caumette P. (1997). Biodegradation of some cationic surfactants. Water Research 11(9), 833-841.
  • [8] Batstone D.J., Keller J., Angelidaki I., Kalyuzhny S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H. and Vavilin V.A. (2002). Anaerobic digestion model No.l (ADM1). IWA Publishing, London UK. (Scientific and Technical Report 13).
  • [10] Bodzek D, Janoszka B. and Dobosz C. (1997). Determination of polycyclic aromatic compounds and heavy metals in sludge from biological sewage treatment plants. Journal of Chromatography A 774, 177-192.
  • [11] Boone D.R. and Xum L. (1987). Effects of pH, temperature and nutrients on propionate degradation by a methanogenic enrichment culture. Applied and Environmental Microbiology, July 1987, 1589-1592.
  • [12] Brummeler E., Hulshoff P.L., Dolfing J., Lettinga G. and Zehnder A. (1985). Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Applied Environmental Microbiology 49(6), 1472-1477.
  • [13] Brunner P.H., Capri S., Marcomini A. and Giger W. (1988). Occurrence and behaviour of linear alkylbenzenesulphonates, nonylphenol, nonylphenol mono- and nonylphenol diethoxylates in sewage and sewage sludge treatment. Water Research 22,1465-1472.
  • [14] De Baere L. A., Devocht M. and van Assche P. (1984). Influence of high NaCl and NH4C1 salt levels on methanogenic associations. Water Research 18, 543-548.
  • [15] De Baere L. A. (2000). State-of-the-art of anaerobic digestion of solid waste in Europe. Water Science and Technology 41(3), 283-290.
  • [16] Demeestere K., Smet E., van Langenhove H. and Galbacs Z. (2001). Optimalisation of magnesium ammonium phosphate precipitation ant ist applicability to the removal of ammonia. Environmental Technology 22, 1419-1428.
  • [17] Feijo G., Soto M., Mendez R.and Lema J.M. (1995). Sodium inhibition in the anaerobic digestion process: antaginism and adaptation phenomena. Enzyme and Microbial Technology 17(2), 180-188.
  • [18] Feltkenhauer H. (2004). Fast online determination of surfactant inhibition in acidic phase bioreactors. Water Science and Technology 49(1), 23-29.
  • [19] Fountoulakis M., Drillia P., Stamatelatou K.and Lyberatos G. (2004). Toxic effect of Pharmaceuticals on methanogenesis. Water Science and Technology 50(5), 335-340.
  • [20] Gallert C. and Winter J. (1997). Mesophilic and thermophilic anaerobic digestion of source-sorted organic waste: effect of ammonia on glucose degradation and methane production. Applied Microbiology and Biotechnology 48,405-410.
  • [21] Garba B. (1996). Effect of temperature and retention period on biogas production from lignolellulosic material. Renew. Energy - An Int. J. 9(1-4), 938-941.
  • [22] Garcia M.T., Campos E, Sanchez-Leal J. and Ribosa I. (1999). Effect of the alkyl chain length on the anaerobic biodegradability and toxicity of quaternary ammonium based surfactants. Chemosphere 38, 3473-3483.
  • [23] Garcia M.T., Campos E, Sanchez-Leal J. and Ribosa I. (2000). Anaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests. Chemosphere 41, 705-710.
  • [24] Garcia M.T., Campos E.D., Dalmau M., Ulan P. and Sanchez-Leal J. (2006). Inhibition of biogas production by alkyl benzene sulfonates (LAS) in a screening test for anaerobic biodegradability. Biodegradation 17(1), 39-46.
  • [25] Gartiser S., Urich E., Alexy R. and Kummerer K. (2007). Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere 66, 1839-1848.
  • [26] Gavala H.N. and Ahring B.K. (2002). Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates. Biodegradation 13(3), 201-209.
  • [27] Grady L., Daigger G.T. and Lim H.C. (1999). Biological Wastewater Treatment Marcel Dekker, Inc, New York, 599-667.
  • [28] Hansen K.H., Angelidaki I. and Ahring B.K (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research 32( 1), 5-12.
  • [29] Hansen K.H., Angelidaki I. and Ahring B.K (1999). Improving thermophilic anaerobic digestion of swine manure. Water Research 33(8), 1805-1810.
  • [30] Hao O., Chen J.M., Huang L. and Buglass R.L. (1996). Sulfate reducing bacteria. Environmental Science and Technology 26,155-187.
  • [31] Hashimoto A.G. (1986). Ammonia inhibition of methanogenesis from cattle wastes. Agricultural Wastes 17(4), 241-261.
  • [32] Henze M. and Harremoes P. (1983). Anaerobic treatment of wastewater in fixed film reactors- A literature review. Water Science and Technology 15(8-9), 1-101.
  • [33] Isa M.H. and Anderson G.K. (2005). Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochemistry 40, 2079-2089.
  • [33] Jain S. and Mattiasson B. (1998). Acclimation of methanogenic consortia for low pH biomethanation process. Biotechnology Letters 20(8), 771-775.
  • [34] Jensen J. (1999). Fate and effects of linear alkylbenzene sulphonates (LAS) in the terrestrial environment. Science of the Total Environment 226(2-3), 93-111.
  • [25] ISO 11734 (1995). Evaluation of the "ultimate" anaerobic biodegradability of organic compounds in digested sludge - method by measurement of the biogas.
  • [36] ISO 13641-1 (2003-05-15). Determination of inhibition of activity of anaerobic bacteria. Part 1: General test.
  • [37] ISO 13641-2 (2003-05-15). Determination of inhibition of activity of anaerobic bacteria. Part 2: Test at low biomass concentration. Kadam P.C. and Boone D.R. (1996). Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic metanogens. Applied Environmental Microbiology 62,4486-4492.
  • [39] Karhadkar P.P., Audic J-M., Faup G.M. and Khanna P. (1987). Sulfide and sulfate inhibition of methanogenesis. Water Research 21, 1061-1066.
  • [40] Kashyap D.R., Dadhich K.S. and Sharma S.K. (2003). Biomethanation under psychrophilic conditions: a review. Bioresource Technology 87, 147-153.
  • [41] Kayhanian M. and Rich D. (1995). Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass and Bioenergy 8(6), 433-444.
  • [42] Kayhanian M. (1999). Ammonia inhibition in high-solids biogasification - An overview and practical solutions. Environmental Technology 20(4), 355-365
  • [43] Kim M., Ahn Y.-H. and Speece R.E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research 36,4369-4385.
  • [44] Kim I., Hwang M., Jang N., Hyun S., Lee S. (2004). Effect of low pH on the activity of hydrogen utylizing methanogens in bio-hydrogen process. International Journal of Hydrogen Energy 29, 1133-1140.
  • [45] Kim J.K., Oh B. R., Chun Y. N. and Kim S.W. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. Journal of Bioscience and Bioengineering 102(4), 328-332.
  • [46] Koster I.W. (1986). Characteristics of the pH-influenced adaptation of methanogenic sludge to ammonia toxicity. Journal of Chemical Technology and Biotechnology 36,445-455.
  • [47] Krylova N.I., Khabiboulline R.E., Naumova R.P. and Nagel M.A. (1997). The influence of ammonium and methods for removal during the anaerobic treatment of poultry manure. Journal of Chemical Technology and Biotechnology 70, 99-105.
  • [48] Kugelman I.J. and McCarty P.L (1965). Cation toxicity and stimulation in anaerobic waste treatment. Journal of Water Pollution Control Federation 37(1), 97-116.
  • [49] Lefebvre O. and Moletta R.(2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research 40(20), 3671-3682.
  • [50] Lefebvre O., Quentin S., Torrijos M.. Godon J.J., Delgenes J.P. and Moletta R. (2007). Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Applied Microbiology and Biotechnology 75(1), 61-69.
  • [51] Liao P.H., Chen A. and Lo K.V. (1995). Removal of nitrogen from swine manure wastewater by ammonia stripping. Bioresource Technology 54, 17-20.
  • [52] Liu T. and Sung S. (2002). Ammonia inhibition on thermophilic aceticlastic methanogens. Water Science and Technology 45, 113-120.
  • [53] Lu F., Chen M., He P.-J. and Shao Li-M. (2008). Effects of ammonia on acidogenesis of protein-rich organic wastes. Environmental Engineering Science 25(1), 114-122.
  • [54] Lund B., Bendixen H.J., Have P. and Ahring B. (1995). Reduction of pathogenic bacteria and viruses by anaerobic digestion. Management of Urban Biodegradable Wastes. James & James Ltd., London.
  • [55] Maekawa T., Liao C.-M. And Feng X.-D. (1995). Nitrogen and phosphorus removal from swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process. Water Research 29(12), 2643-2650.
  • [56] Mata-Alvarez J. (2003). Fundamentals of the anaerobic digestion process, in Biomethanization of the Organic Fraction of Municipal Solid Waste, (ed.) Mata-Alvarez J., IWA Publishing, London, 1-20.
  • [57] Milan Z., Sanchez E., Weiland P., Borja R., Martin A. and Ilangovan K. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresources Technology 80, 37-43.
  • [58] Mosche M. and Jordening H.-J. (1999). Comparison of different models of substrate and product inhibition in anaerobic digestion. Water Research 33(11), 2545-2554.
  • [59] Mosche M. and Meyer U. (2002). Toxicity of linear alkylbenzene sulfonate in anaerobic digestion: influence of exposure time. Water Research 36(13), 3253-3260.
  • [60] O Flaherty V., Mahony T., O Kennedy R. and Colleran E. (1998a). Effectof pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry 33(5), 555-569.
  • [61] Omil F., Mendez R.and Lema J.M. (1995). Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology 54(3), 269-278.
  • [62] Operation of municipal wastewater treatment plants (1990), Manual of practice No. 11, vol. Ill, Water Pollution Control Federation, USA.
  • [63] Petersen S.P. and Ahring B.K. (1992). The influence of sulphate on substrate utilization in a thermophilic sewage reactor. Applied Microbiology and Biotechnology 36, 805-809.
  • [64] RanadeD.R., Dighe A.S., Bhirangi S.S., Panhalkar V.S. and Yeole T.Y. (1999). Evaluation of the use of sodium molybdate to inhibit sulphate reduction during anaerobic digestion of distillery waste. Bioresource Technology 68,287-291.
  • [65] Safely Jr. L.M. and Westerman P.W. (1992). Performance of a low temperature lagoon digester. Bioresource Technology 41, 167-175.
  • [66] Salminen E. and Rintala J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste - a review. Bioresource Technology 83, 13-26.
  • [67] Sanz J.L, Rodriguez N. and Amils R. (1996) The action of antibiotics on the anaerobic digestion process. Applied Microbiology and Biotechnology 46(5/6), 587-592.
  • [68] Scherer P.A., Vollmer G.-R., Fakhouri T. and Martensen S. (2000). Development of a methanogenic process to degrade exhaustively the organic fraction of municipal "grey waste" under thermophilic and hyperthermophilic conditions. Water Science and Technology 41(3), 83-91.
  • [69] Schmidt J.E. and Ahring B.K. (1993). Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from UASB reactor. Applied Microbiology 59, 2546-2551.
  • [70] Sharma D.K. (2002). Studies on availability and utilization of onion storage waste in a rural habitat. Ph.D. thesis, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, India.
  • [71] Speece R. (1996). Anaerobic Technology for Industrial Wastewaters. Archae Press, Nashville, TN, 29-58.
  • [72] Sung S. and Liu T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53,43-52.
  • [73] Tada C, Yang Y., Hanaoka T., Sonoda A., Ooi K. and Sawayama S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology 96, 459-464.
  • [74] Takashima M and Speece R.E. (1990). Mineral requirements for methane fermentation. Critical Reviews in Environmental Control 19, 465-479.
  • [75] Takoni K.A., Zappi M.E., French W.T. and Brown L.R. (2007). Feasibility of methanogenic digestion applied to a low pH acetic acid solution. Bioresource Technology 98,1579-1585.
  • [76] Westermann P., Ahring B.K. and Mah R.A. (1989). Temperature compensation in Methanosarcina barken by modulation of hydrogen and acetate affinity. Applied Environmental Microbiology 55,1262-1266.
  • [77] van Langerak E.P.A., Gonzales-Gil G., van Aelst A., van Lier J.B., Hamelers H.V.M. and Lettinga G. (1998). Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Research 32(4), 1255-1263.
  • [78] Vogelaar J.C.T., Klapwijk B, Temmink H., van Lier J.B. (2003). Kinetic comparisons of mesophilic and thermophilic aerobic biomass. Journal of Industry Microbiology and Biotechnology 30(2), 81-88.
  • [79] Yadvika, Santosh, Sreekrishnan T.R., Sangeeta K. and Vineet R. (2004). Enhancement of biogas production from solid substrates using different techniques - a review. Bioresource Technology 95, 1-10.
  • [80] Ying G.-G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environmental International 32, 417-431.
  • [81] Yu H.Q., Tay J.H. and Fang H.H.P. (2001). The roles of calcium in sludge granulation during UASB reactor start-up. Water Research 35(4), 1052-1060
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.