PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methanotrophic activity of coalbed rocks from "Bogdanka" coal mine (south-cast Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methane is an atmospheric trace gas, which is estimated to contribute about 20% to global warming. Coal mining used to be regarded as attributing considerably to the anthropogenic emissions of that potent greenhouse gas. Recently discovered methanotrophic abilities of coalbed rocks brought a new argument to the discussion about the environmental impact of the mining industry. In the present work, we determined the methanotrophic activity and maximum capacity (V_max) of methane oxidation originating from rocks surrounding seam 385/2 of the "Bogdanka" coal mine. Methane oxidation rates ranged from 0.231uM CH_4 g day in the rock from the middle of the seam to 0.619 uM CH_4 g day in the bottom rock (4.4 m depth). Methanotrophic activity and VmaJ increased with the distance to the coal body and with decreasing TOC content. Initial and terminal redox conditions (Eh>320 mV, pH 7.60-8.62) confirmed the oxic character of the methane oxidation process.
Rocznik
Strony
183--191
Opis fizyczny
bibliogr. 39 poz., tab., wykr.
Twórcy
autor
  • The John Paul II Catholic University of Lublin Department of Biochemistry and Environmental Chemistry Al. Kraśnicka 102, 20-718 Lublin, Poland
  • The John Paul II Catholic University of Lublin Department of Biochemistry and Environmental Chemistry Al. Kraśnicka 102, 20-718 Lublin, Poland, apytlak@kul.lublin.pl
Bibliografia
  • [1] Amend, J.P.,Teske, A., 2003. Expanding rontiers in deep subsurface microbiology. Paleogeography, Paleoclimatology, Paleoecology 219, 131-155.
  • [2] Bender, M., Conrad, R., 1995. Effect of methane concentrations and soil conditions on the induction of methane oxidizing activity. Soil Biol. Biochem. 27, 1517- 1527.
  • [3] Bodelier, P.L.E., Laanbroek, H.J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47. 265-277.
  • [4] Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F.,Gieseke, A., Amann, R., Jergensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623-626.
  • [5] Bosquet, P. et al., 2006. Contribution of anthropogenic and natural sources to atmospheric variability. Nature 443, 439-443.
  • [6] Crutzen, P.J., 1991. Methane's sinks and sources. Nature 350, 380-381.
  • [7] Dunfield, P.F. Liesack, W., Henckel, T., Knowles, R., Conrad, R., 1999. High-affinity methane oxidation by a soil enrichment culture containing a type II Methanotroph. Applied and Environmental Microbiology 65, 1009-1014.
  • [8] EPA ,2006. US EPA Greenhouse Gas Report: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency: Washington, DC.
  • [9] Hanson, R.P., Hanson, T.E., 1996. Methanotrophic bacteria. Microbiological Reviews 60. 439-471
  • [10] Hiltsch, B.W., 2001. Methane oxidation in non flooded soils as affected by crop production-invited paper. European Journal of Agronomy 14. 237-260.
  • [11] IPCC Climate Change 2001: The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton J.T., Y. Ding. D.J.Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  • [12] IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  • [13] Keppler, F., Hamilton, J.T.G., Bra, V., Rockmann, T., 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439,187-191.
  • [14] King, G.M., 1997. Responses of atmospheric methane consumption by soils to global change. Global Change Biology 3. 351-352.
  • [15] Knief, C, Lipski, A., Dunfield, P., 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Applied and Environmental Microbiology 69, 6703-6714.
  • [16] Kotarba, M.J., 2001. Composition of coalbed gases in the Upper Silesian and Lublin Basins, Poland. Organic Geochemistry 32. 163-180.
  • [17] Kotelnikowa, S., 2001. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews 58, 367-395.
  • [18] Le Mer, J., Roger, P., 2001. Production, oxidation and consumption of methane by soils: A review. Eur. J. Soil. Biol. 37, 25-50.
  • [19] Ledin, M., Pedersen, K., 1996. The environmental impact of mine wastes-Roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Reviews 42, 67-108.
  • [20] Lelieveld, J., Crutzen, P.J., Briihl, C, 1993. Climate effects of atmospheric methane. Chemosphere 26, 739-768.
  • [21] Lloyd D., 1995. Microbial processes and the cycling of atmospheric trace gases. Tree 10. 476-478.
  • [22] Mazurkiewicz, M. 2004. Prognoza metanowości bezwzględnej pokładów węgla kamiennego w polu Stefanów w Lubelskim Węglu "Bogdanka" S.A. w aspekcie zagrożenia metanowego wraz z doborem profilaktyki w rejonach projektowanych ścian. Etap I-Prognoza. Prognosis for methane emissions from coal seams in the area of Stefanów in Lubelski Węgiel "Bogdanka" S.A in context of future exploitation and possibility of methane explosions. Etap I-Prognosis Fundacja Nauka i Tradycje Górnicze, Kraków.
  • [23] Niemann, H., Losekann, T., de Beer, D" Elvert, M.,Nadalig T., Knittel, K.,Amann, R., Sauter, E.J., Schliiter, Klages, M., Foucher, J.P., Boetius, A., 2006. Novel Microbial communities of the Haakon Mosby Mud volcano and their role as a methane sink. Nature 443, 854-858.
  • [24] Pedersen, K., 2000. Exploration of deep intraterrestial microbial life: current perspectives. FEMS Microbiology Letters 185,9-16.
  • [25] Pokorny, R., Olejnikova, P., Balog, M., HQlker,U., Janssen, M., Bend, J., Hbfer, M., Holienein, R., Hudecova, D., Varecka, L. 2005,.Characterization of microorganisms isolated from lignite excavated from Zahorie coal mine (southwestern Slovakia). Research in Microbiology. 932-943,
  • [26] Raghoebarsing, A.A., Pol, A., Van de Pas-Schoonem, K.T., Smolderts, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, JS., Sinnighe Damste J.S., Op den Camp, H.J.M., Jetten, M.S.M., Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440. 918-921.
  • [27] Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C. Rijpstra, W.I.C., Wolters-Arts, M., Derksen, J., Jetten, M.S.M., Schouten, JS, Sinnighe Damste J.S, Lamers, L.P.M., Roelofs, J.G.M., Op den Camp, H.J.M, Strous, M., 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436, 1153-1156,
  • [28] Regina, K, Pihlatie, M., Esala, M., Alakuku, L., 2007. Methane fluxes on Boral arable soils. Agriculture, Ecosystems and Environment 119, 346-352.
  • [29] Sarkar, A., Ray, A.K., Bhattacharya, S.K., 1996. Stable isotope studies of fossiliferous Paleogene sequence of Kutch, Western India: Paleoenvironmental omplications. Paleo 121, 65-77.
  • [30] Schiermeier, Q., 2006. The methane mystery. Nature 442, 730-731.
  • [31] Stępniewska, Z., 1988. Redox potential of mineral soils of Poland. Probl. Agrofizyki 56, 108.
  • [32] Stępniewska Z., A. Szmagara A., Niewiarowska M., 2006. The environmental requirements of methanotrophic bacteria inhabiting coal mine dump rock, International Workshop "Pathways of pollutant from landfills to air and water-soil systems and mitigation strategies of their impact on the ecosystems", Kazimierz Domy 17-20 September.
  • [33] Stępniewska, Z., Szmagara, A., Stefaniak, E., 2004. Optimization of Environmental parameters conductive to methane oxidation with coal mine dump rock. Environment Protection Engineering 30. 133-137.
  • [34] Su S., Beath A., Guo H., Mallett C, 2005. An assessment of mine methane mitigation and utilization technologies. Progress in Energy and Combustion Science 37, 123-170.
  • [35] Trotsenko, Y.A., Khmelenina, V.N., 2002. Biology of extremophilic and extremotolerant methanotroph. Arch. Microbiol. 177,123-131.
  • [36] Trotsenko, Y.A., Khmelenina, V.N., 2005. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiology Ecology. 15-26.
  • [37] Waekham, S.G., Lewis, CM., Hopmans, E.C. Schouten, S., Sinnighe Damste, J.S., 2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta 67, 359-1374.
  • [38] Watson, A., Stephen, K.D., Nedwell, D.B., Arah, J.P., 1997. Oxidation of methane in peat: Kinetics of CHi and O2 removal and the role of plant roots. Soil. Biol. Biochem. 29,1257-1267.
  • [39] Wuebbles, D.J., Hayhoe K., 2002. Atmospheric methane and global change. Earth-Science Reviews 57. 177-210. Received: September, 2007; accepted: June, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.