PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization research on biodegradation of hydrocarbon pollutions in weathering soil samples from manufactured gas plant (MGP)

Autorzy
Identyfikatory
Warianty tytułu
PL
Badania optymalizacyjne biodegradacji zanieczyszczeń węglowodorowych w zestarzałych glebach z gazowni klasycznej
Języki publikacji
EN
Abstrakty
EN
The aim of this work is purification of contaminated soil from manufactured gas plants MGP, which arc not used. Prepared chromatographic methodologies, which allow qualitative identification and quantitative determination of individual aliphatic and aromatic (TAH, PAH) hydrocarbons in the soil from the selected MGP, arc presented. The results of the research on remediation of the soil polluted with petroleum hydrocarbons (TAH, PAHs) in semi-field conditions arc discussed. Application of basic biorcmediation and bioaugmcntation with indigenous microorganisms, enriched with PAH biodegradable fungi, resulted in reduction in amount of 5- and 6-polycyclic aromatic hydrocarbons. The research enables control of remediation progress, selection of optimal doses of biogenic compounds and determines the time of the process. The entire cycle of soil remediation was monitored with the use of gas chromatography (GC). Estimation of biodegradation degree of individual aliphatic hydrocarbons (alkancs) was based on changes in their concentration in the soil and determined by biodegradation indicators: C_l7/pristanc and C_18/phylane ratios. Attention was paid particularly to biodegradation of polycyclic aromatic hydrocarbons (PAH), which were observed in substantial concentrations in the polluted soil. The elaborated chromatographic methodology of PAH determination in the soil enabled estimation of a biodegradation rate referring to individual compounds. Moreover, attempts to create a TAH biodegradation model with the use of C_30_17&alpfa:(H),21β(H)-hopane were undertaken.
PL
Artykuł podejmuje zagadnienia związane z problemem oczyszczania gruntu skażonego w wyniku działalności klasycznych gazowni, które obecnie zostały wyłączone z eksploatacji. Przedstawiono opracowane metodyki chromatograficzne umożliwiające jakościową identyfikację i ilościowe oznaczenie poszczególnych węglowodorów alifatycznych i aromatycznych oraz oznaczenie ich sumarycznej zawartości (TAH, WWAs) w gruncie z terenu wytypowanej do badań gazowni. Omówiono wyniki badań w skali półtechnicznej oczyszczania gruntu skażonego zanieczyszczeniami węglowodorowymi (TAH, WWA) z wykorzystaniem biorcmediacji podstawowej i bioaugmentacji poprzez inokulację mikroorganizmami autochtonicznymi wzbogaconymi o grzyby zdolne do biodegradacji WWA, co uwidacznia się w obniżeniu zawartości 5- i 6-picrścicniowych WWA. Prowadzone badania pozwalają prześledzić przebieg procesu oczyszczania gruntu, dobrać optymalne dawki substancji biogennych i określić ramy czasowe prowadzonego procesu. Cały cykl oczyszczania gruntu monitorowano za pomocą chromatografii gazowej (GC). Oceny stopnia biodegradacji poszczególnych węglowodorów alifatycznych (n-alkanów) dokonano na podstawie zmian zawartości oznaczonych chromatograficznie oraz za pomocą przyjętych wskaźników stopnia biodegradacji: C_17/Pr i C_18/F. Zastosowanie biomarkera C-30_17α(H),21 β(H)-ho-panu do normalizacji stężeń TAH i WWA w trakcie przebiegu poszczególnych etapów biodegradacji pozwoliło na opracowanie modelu matematycznego opisującego kinetykę biodegradacji TAH i WWA.
Rocznik
Strony
51--70
Opis fizyczny
bibliogr. 78 poz., tab., wykr.
Twórcy
autor
  • Oil and Gas Institute ul. Lubicz 25A, 31-503 Kraków, Poland
Bibliografia
  • [1] Alexander R.R., J. Tang, M. Alexander: Genotoxicity is Unrelated to Total Concentration of Priority Carcinogenic Poly cyclic Aromatic Hydrocarbons in Soils Undergoing Biological Treatment, J. Environ. Qual.,31, 150-154(2002).
  • [2] Annweiler E., H.H. Richnow, G. Antranikian, S. Hebebrock, C. Garms, S. Frankę, W. Franko, W. Micha-elis: Naphthalene degradation derived carbon into biomass of the thermophile Bacillus thermoleovorans, Apppl. Environ. Microbiol., 62, 2547-2553 (2000).
  • [3] Atlas R.M.: Microbial degradation of petroleum hydrocarbons an environmental perspective, Microbiol. Rev., 45, 180-209(1981).
  • [4] Bossert I., R. Bartha.: The fate of petroleum in soil ecosystem, R.M. Atlas (cd.), Petroleum Macmillan Co, New York 1984,435-476'.
  • [5] Bragg J.R., R.C. Prince, E.J. Harner, R.M. Atlas: Effectiveness of bioremediation for the Exxon Valdez oil spill, Nature, 368, 413-418 (1994).
  • [6] Brown J.L., J. Syslo, Y. Lin, S. Getty, R. Vemuri, R. Nadeu: On-site treatment of contaminated soils: An approach to bioremediation of weathered petroleum compounds, Journal of Soil Contamination, 6, 773-80 (1998).
  • [7] Bumpus J.A.: Bioderadation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, Appl. Environ. Microbiol., 55, 145-158 (1989).
  • [8] Chaineau C.H., J.L. Morel, J. Dupont, E. Bury, J. Qudot: Comparison of the oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil, Sci. Total Environ., 227, 237-247 (1999).
  • [9] Chaineau C.H., C. Yepremian, J.F. Vidalie, J. Ducreux, D. Ballerini: Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments, Water, Air, and Soil Pollution, 144, 419-440 (2003).
  • [10] Chang D.Y., I. Lopez, S.G. Yocklovich: Determine of kerosene and diesel in soil by purge and trap vs. extraction procedure, J. Soil Contam., 13, 239-251(1992).
  • [11] Chang Z.Z., R.W. Weaver, R.L. Rhykerd: Oil bioremediation in a high and low phosphorous soil, J. Soil Contam., 5, 215-224(1996).
  • [12] Churchill S.A., J.P. Harper, P.F. Churchil: Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring polycyclic aromatic and aliphatic hydrocarbons, Applied Environ. Microbiol., 65, 549-552 (1999).
  • [13] Colleran E.: Uses of bacteria in bioremediation: Methods in Biotechnology, Vol. 2, D. Shcchan cd. Bioremediation Protocols, Humana Press Inc., Totowa N.J. 1996.
  • [14] Cunnigham C.J., J.B. Jvshana, V.I. Lozinsky: Bioremediation of diesel contaminated soil microorganisms immobilized in polyvinyl alcohol, International Biodctcrioration & Biodegradation, 54, 167-174 (2004).
  • [15] Delef R.J. van, A.S.M.J. Doverem, A.G. Snijders: The determination petroleum hydrocarbons in soil using a miniaturized extraction method and gas chromatography, Frcscnius J. Anal. Chem., 350, 638--641 (1994).
  • [16] Fismes J., C. Perrin-Ganier, P. Empereuer-Bissonnet, J.L. Morel: Soil-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils, J. Environ. Qual.,31, 1649-1656(2002).
  • [17] Hejazi R.F., T. Husain: Landform performance under arid conditions, 2. Evaluation of parameters. Environ. Sci. Tcchnol., 8, 2457-2469 (2004).
  • [18] Huddlestone R.L., CA. Bleckman, J.R. Wolfe: Land treatment biological degradation processes, [in:] R.C. Lochr, J.E. Malina Jr. red. Land treatment: A hazardous waste management alternative, University of Texas, 1986,41-62.
  • [19] Huesemann H.M., T.S. Hausmann, T.J. Fortman: Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils, Environ. Toxicology and Chemistry, 12, 2853-2860 (2003).
  • [20] Jackson A.W., J.H. Pardue: Potential for enhancement of biodegradation crude oil in Louisiana salt marshes using nutrient amendments, Water, Air, and Soil Pollut., 109, 343-355 (1999).
  • [21] Johnsen A.R., A. Winding, U. Karlson, P. Roslev: Linking of Microorganisms to Phenathrene Metabolism in Soil by Analysis of'3C-LabeledCellLipids,App\\cd Environ. Microbiol., 68, 6106-6113 (2002).
  • [22] Jonge H. de, J.I. Freijer, J.M. Verstraten, J. Westerveld: Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils, Environ. Sci. Technol., 31, 771-775(1997).
  • [23] Katsivela E., E.R.D. Moore, N. Kalogerakis: Biodegradation of aliphatic and aromatic hydrocarbons: Specificity among bacteria isolated from refinery waste sludge, Water, Air, and Soil Pollut., 3, 103-115 (2003).
  • [24] Kim S.J., O. Kweon, P.J. Freeman, R.C. Jones, M.D. Adjei, J.W. Jhoo, R.D. Edmondson, C.E. Cerniglia: Molecular Cloning and expression of genes encoding a novel dioxygenase involven in low-high molecular weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1, Applied Environ. Microbiol., 72, 1045-1054 (2006).
  • [25J Kim S.J., O. Kweon, P.J. Freeman, R.C. Jones, R.D. Edmondson, C.E. Cerniglia: Complete and integrated pyrene degradation Pathway PYR-1 based on systems biology, Applied Environ. Microbiol., 182, 464-47 (2007).
  • [26] Korda A.D., A. Santas, R. Tenentc, P. Santas: Petroleum hydrocarbon bioremedialion: sampling and analytical technique, in-situ treatments and commercial microorganisms currently used, Applied Microbiology and Biotechnology, 48, 677-686 (1997).
  • [27] Kurek E., A. Stec, D. Staniak: Biodegradacja ex-situ gleby skażonej produktami ropopochodnymi, Ekon-żynieria, 9, 5-11 (1998).
  • [28] Lazar 1., A. Voicu, C. Nicolescu, D. Mucenica: The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition, Journal of Petroleum Science and Engineering, 22, 161-169 (1999).
  • [29] Li H., Y. Zhang, C.G. Zhang, G.X. Chen: Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a Paddy soil irrigation area, J. Environ. Qual., 34, 1073-1080 (2005).
  • [30] Miya R.K., M.K. Firestone: Enhanced phenathrene biodegradation in soil by slender oat root exudates and root debris, J. Environ. Qual., 30, 1911-1918 (2001).
  • [31] Moody J.A., J.P.F. Freeman, R.D.R. Doerge, C.E. Cerniglia: Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. Strain PYr-1, Applied Environ. Microbiol., 4, 1476-1483 (2001).
  • [32] Piskowska-Wasiak J.: Metody rekultywacji terenów wyłączonych z eksploatacji gazowni klasycznych, Gaz, Woda i Technika Sanitarna, 3, 4-11 (2005).
  • [33] Pollard S.J.T., M. Whittakcr, G.C. Risden: The fate of heavy oil wastes in soil microcosms I: a performance assessment of biotransformation indices, Sci. Total. Environ., 226, 1-22 (1999).
  • [34] Prince R.C, D.L. Elmendorf, J.R. Lute, C.S. Hsu, C.E. Haith, J.D. Senius, G.J. Dechert, G.S. Douglas, E.L. Butler: 17-alpha(Hj,21-beta(H)-Hopane as a conserved internal marker for estimating the biodegradation of crude-oil. Environ. Sci. Tcchnol., 28, 142-145 (1994).
  • [35] Qudot J., E. Dutrieux: Hydrocarbon weathering and biodegradation in tropical estuarine ecosystem, Mar. Environ. Res., 27, 195-213 (1989).
  • [36] Rahman K.S.M., J. Thahira-Rahman, P. Lakshmanapcrumaisamy, I.M. Banat: Towards efficient crude oil degradation by a mixed bacterial consortium, Biorcsource Technology, 85, 257-261 (2002).
  • [37] Rehmann K., H.P. Noll, C.E.W. Steinberg, A.A. Kettrup: Pyrene degradation by Mycobacterium sp. strain KR2, Chemosphere, 39, 2977-1930 (1998).
  • [38] Riser-Roberts E.: Remediation of petroleum contaminated soil, Lewis Publ. Washington (USA) 1998.
  • [39] Roche A.C., C.T. Miller: Assessment of extraction methodologies for measuring subsurface contamination, Fresenius J. Anal. Chem., 339, 732-739 (1991).
  • [40] Saito A., T. Iwaabuchi, S. Harayama: A novel phenanthrene dioxygenase from Nocardioides sp. strain KPT: expression in Escherichia coli, J. Bacteriol., 182, 2134-2141 (2000)
  • [41] Santas R., A. Korda, A. Tenente, K. Buchholz, P. Sandas: Mesocosm assays of oil spill bioremediation with oleophilic fertilizers: Inopol, FI or both?, Marine Pollution Bulletin, 38, 44-48 (1999).
  • [42] Saponaro S., L. Bonomo, G. Petruzzelli, L. Romele, M. Barbafieri: Polycyclic aromatic hydrocarbons slurry phase bioremediation of a manufacturing gas (MGP) aged soil, Water, Air, and Soil Pollut., 135, 219-235(2002).
  • [43] Saśck W., T. Cajthaml, M. Banat: Use of fungal technology in soil remediation: A case study, Water, Air, and Soil Pollution, 3, 5-14 (2003).
  • [44] Saweyr G. M.: Determination of gasoline range, diesel range oiganics in soils and water by flame ioniza-tion gas chromatography, J. Soil Contam., 3, 261-300 (1996).
  • [45] Sharma V.K., S.D. Hicks, W. Rivera, F.G. Vazquez: Characterization and degradation of petroleum hydrocarbons following an oil spill into a coastal environment of south Texas, U.S.A., Water, Air, Soil and Pollut., 13, 111-127(2002).
  • [46] Shuttleworth K.L., J.H. Sung, E. Kim, C.E. Cerniglia: Physiological and genetic comparison of two aromatic hydrocarbon - degrading Sphingomonas strains. Mol. Cells 10, Applied Environ. Microbiol., 199-205 (2000).
  • [47] Sims J.L., R.C. Sims, R.R. Dupont, J.E. Matthews, H.H. Russcl: In situ bioremediation of contaminated unsaturated surface soils, US EPA Technical Report, EPA/540/5-93/501, Utah State University, (1993).
  • [48] Siuta J.: Podstawy biodegradacji ropopochodnych składników w glebach i odpadach. Inżynieria Ekologiczna, 2, 23-35 (2003).
  • [49] Spriggs T, K. Banks, D. Schwab: Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant- impacted soil, ]. Environ. Qual., 34, 1755-1762 (2005).
  • [50] Steliga T.: Technologia oczyszczania gruntów z zanieczyszczeń ropopochodnych metodą in-situ, Prace INiG, Kraków, 133, 1-78 (2006).
  • [51] Steliga T.: The effectiveness of soil purification from petroleum hydrocarbons verify by usage ultrasound extraction combined with gas chromatography, [in:] The XXVII Symposium Chromatographic Methods of Investigating the Organic Compounds, Katowice 2003, 34-36.
  • [52] Steliga T, P. Jakubowicz: Badania przemysłowe procesu biodegradacji zanieczyszczeń ropopochodnych w odpadach wiertniczych, Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, Miesięcznik WUG, 4, 15-21 (2006).
  • [53] Steliga T., P. Kapusta, P. Jakubowicz, A. Turkiewicz: Optymalizacja biodegradacji in-situ odpadów wiertniczych zanieczyszczonych substancjami ropopochodnymi, Wiertnictwo-Nafta-Gaz AGH, 23, 409-^121(2006).
  • [54] SteligaT., D. Kluk. Analiza przebiegu procesu biodegradacji zanieczyszczeń ropopochodnych w gruncie 2 wykorzystaniem chromatografii gazowej, Wiertnictwo-Nafta-Gaz AGH, 21, 349-356 (2004).
  • [55] Tallcy J.W., U. Ghosh, S.G. Tucker, R.G. Luthy: Particle-scale understanding of the bioavailability of PAHs in sediment, Environ. Sci. Tcchnol., 36, 477^183 (2002).
  • [56] Venosa A.D., M.T. Suidan, D. King, B.A. Wrenn: Use ofhopane as a conservative biomarkerfor monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach, J. Ind. Microbiol. Biot., 18, 131-139(1997).
  • [57] Venosa A.D., M.T. Suidan, B.A. Wrcnn, K.L. Stromcicr, J.R. Haincs, B.L. Ebcrhart, D. King, E. Holder: Bioremediation of an experimental oil on the shoreline of Delaware bay, Environmental Science & Technology, 30, 1764-1775 (1996).
  • [58] Waksmundzka-Hajnos M.: Properties offiorisil and its use in chromatography, Chcm. Anal. (Warsaw), 43,300-324(1998).
  • [59] Wang Z., M. Fingas, G. Sergy: Study of 22-year old Arrow oil using biomarker compounds by GC/MS, Environ. Sci. Technol., 28, 1733-1746 (1994).
  • [60] Wattiau P.: Microbial aspects in bioremediation of polluted by polyaromatic hydrocarbons. Biotechnology for the environment: strategy and fundamentals, Kluwer Acad. Publishers., 69-89 (2002).
  • [61] Wiele T.R. van de, W. Verstraete, S.D. Sieiliano: Polycyclic aromatic hydrocarbon release from soil matrix in the in vitro gastrointestinal tract,}. Environ. Qual., 33, 1343-1353 (2004).
  • [62] Wiesche C, R. Martens, F. Zadrazil: The effect of interaction between white-root fungi and indigenous microorganisms on degradation of polycyclic aromatic hydrocarbons in soil, Water, Air, and Soil Poll., 3, 73-79 (2003).
  • [63] Wilcke W., M. Krauss, J. Lilienfein, W. Amelung: Polycyclic aromatic hydrocarbon storage in a typical Cerrado of the Brazilian Savanna, J. Environ. Qual., 33, 946-955 (2004).
  • [64] Wilcke W., M. Krauss, G. Safroniv, A.J. Fokin, M. Kaupenjohann: Polycyklic hydrocarbons (PAHs) in soils of the Moscow region concentrations, temporal trends, and small-scale distribution, J. Environ. Qual., 34, 1581-1596(2005).
  • [65] Wilson S.C., K.C. Jones: Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review, Environ. Pollut., 81, 229-249 (1996).
  • [66] Wirght A.L., R.W. Weave: Fertilization and bioaugmentation for oil biodegradation in salt march Meso-cosms, Water, Air, and Soil Pollut., 156, 229-240 (2004).
  • [67] Wirght A.L., R.W. Weaver, J.W. Webb: Oil bioremediation in salt marsh mesocosms as influenced by N and P fertilization, flooding and season, Water, Air, and Soil Pollut., 95, 179-191 (1997).
  • [68] Wrenn B.A., A.D. Venosa: Selective enumeration of aliphatic hydmcarbon degrading bacteria by a most--probable number procedure, Can. J. Microbiol., 42, 252-258 (1996).
  • [69] Xu R., N.L.A. Lau, K.L. Ng, J.P .Obbard: Application of a slow-release fertilizer for oil bioremediation in beach sediment, J. Environ. Qual., 33, 1210-1216 (2004a).
  • [70] Xu R., J.P. Obbard: Biodegradation of polycyclic aromatic hydrocarbons in oil-contaminated beach sediments treated with nutrient amendments,J. Environ. Qual., 33, 861-867 (2004).
  • [71] Xu R., J.P. Obbard: Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil contaminated beach sediments, J. Environ. Qual., 32, 1243-1243 (2003).
  • [72] Yang Y., R.F. Chen, M.P. Shiaris: Metabolism of naphtahalene, fluorene, andphenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NICIB 9S16, J. Bactcriol., 178, 2158-2164(1994).
  • [73] Yerushaimi L., M. Sarrazin, A. Peisajovich, G. Leclair: Enhanced biodegradation of petroleum hydrocarbons in contaminated soil, Bioremediation Journal, 1, 37-51 (2003).
  • [74] Yu S.H., L. Ke, Y.S. Wong, N.F.Y. Tarn: Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environment International, 31, 149-154 (2005).
  • [75] Zheng Z., J.P. Obbard: Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium Oxidation, J. Environ. Qual., 31, 1842-1847 (2002).
  • [76] Zhou E., R.L. Crawford: Effects of oxygen, nitrogen and temperature on gasoline biodegradation in soil, Biodegradation, 6, 127-140 (1995).
  • [77] Zieńko J.: Technologie wykorzystujące metody fizyczne oczyszczania środowiska gruntowo-wodnego, Ekologia i Technika, 3, 89-94 (1999).
  • [78] Zylstra G.J., E. Kim: Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae Bl, Ind. Micro-bial. Biotcchnol., 19, 408^14 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0013-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.