PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza chemiczna oligonukleotydów na fazie stałej. Możliwości i ograniczenia nośników stałych

Identyfikatory
Warianty tytułu
EN
Chemical solid-phase synthesis of oligonucleotides. possibilities and limitations of solid-phase supports
Języki publikacji
PL
Abstrakty
EN
Synthesis of biopolymers (peptides, proteins and nucleic acids) has long been in the range of interest of numerous chemists. The primary structure of biomolecules consists of linear and repeating sequences of monomeric units (aminoacids, nucleic bases, sugars) in a specifically determined orientation. Therefore, chemical synthesis of biopolymers comprises a lot of identical, repetitive steps (condensation, chain elongation and purification). Solid phase method is currently used also for the oligonucleotide [2, 3] (Figure 1) and oligosaccharide synthesis. There exist interesting applications of analogous approach to combinatorial synthesis of small molecules (Solid Phase Organic Chemistry - SPOC) [4, 5]. Automation of the phosphoramidite method of oligonucleotide synthesis process proposed by Caruthers [6] made an enormous impact on biological, medical and biotechnological sciences. It is beyond any doubt that this is the fastest and the most convenient method of oligonucleotide synthesis aimed at biological research. Solid phase synthesis has many advantages, however, it is not free of drawbacks either. Depending on the synthesis method, various types of supports are used. An ideal support should have an appropriate and reactive chemical group on its surface, e.g. -NH2, -OH, -COOH, by means of which it is connected to the linker and the first unit of the monomer. Surface functionalization of the solid phase determines the number of available reactive groups and characterizes support loading expressed in micromoles per gram. Nucleosides are attached to the support by a linker, the choice of which depends on the reaction conditions. The linker arm must be designed in such a way that it is adjusted to the cleavage conditions and deprotection procedures. Depending on the synthesis purpose and the type of a oligonucleotide, various linker arms are used. They include: linker arms cleaved after synthesis, labile linker arms, universal linkers [21, 22], and the linker arms for deprotection of the immobilized products [26, 27]. Among numerous methods of oligonucleotide synthesis, the phosphoramidite method is the most common. The phosphoramidite approach (Figure 10) allows for obtaining both natural DNA/RNA and plenty of modified analogs (phosphorothioates, phosphoroselenoathes, triesters and others). Its alternative is the H-phosphonate method (Figure 11) [40-42]. Particular advantage of this method is that it can be used in the synthesis without protection of nucleobases. Depending on its destination, the synthesis must be very carefully designed considering the strategy of group protection to make them stable under reaction conditions. A decision must be also made whether to use the phosphoramidite method or the H-phosphonate method taking also into account whether the product is to be immobilized on the support or not, which depends on expected results.
Rocznik
Strony
571--594
Opis fizyczny
bibliogr. 56 poz., wykr.
Twórcy
autor
  • Zakład Biologii Strukturalnej, Katedra Endokrynologii Ogólnej Uniwersytet Medyczny w Łodzi, ul. Żeligowskiego 7/9, 90-752 Łódź, iza_burzynska@yahoo.com
Bibliografia
  • [1] R.B.'Merrifield, Science, 1965,150, 178.
  • [2] S. Sun, A. Yoshida, J.A. Piccirilli, RNA, 1997, 3, 1352.
  • [3] S.A. Scaringe, Methods, 2001, 23, 206.
  • [4] J.S. Fruchtel, G. Jung, Angew. Chem. Intl. Ed. Engl., 1996, 35, 17.
  • [5] J.A. Porco, T. Deegan, W. Devonport, O.W. Gooding, K. Heisler, J.W. Labadine, B. Newcomb, C. Nguyen, P. van Eikeren, J. Wong, P. Wright, Mol. Divers., 1997, 2, 197.
  • [6] M.D. Matteucci, M.H. Caruthers, J. Am. Chem. Soc, 1981,103, 3185.
  • [7] S.L. Beaucage, M.H. Caruthers, Tetrahedron Lett., 1981, 22, 1859.
  • [8] L. Stryer, Biochemia, Wydawnictwo Naukowe PWN, Warszawa 2005, Wydanie III zmienione.
  • [9] E. Wickstrom (ed.), Clinical trials of genetic therapy with antisense DNA and RNA vectors, New York, Marcel Dehker, Inc. 1998
  • [10] W.E. Rapp, [w:] Combinatorial Chemistry: Synthesis and Application, (S.R. Wilson and A.W. Czarnik, eds.), str. 65-93, John Wiley & Sons, New York.
  • [11] W.J. Stec, Stereocontrolled synthesis of P-chiral oligoribonucleotides, Antisense Research and applications, S.T. Crooke, B. Lebleu (ed.) CRC Press, 1993, 251.
  • [12] L.A. Woźniak, M. Janicka, M. Bukowiecka-Matusiak, Europ. J. Org. Chem., 2005,12, 5189.
  • [13] R. Frank, W. Heikens, Heisterberg - G. Moutsis, H. Bloker, Nucleic Acids Res., 1983,13, 4365.
  • [14] J. Ott F. Eckstein, Nucl. Acids Res., 1984,12, 9137.
  • [15] S.L. Beaucage, D.E. Bergstrom, R Herdewijn, A. Matsuda, Current Protocols, [w;] Nucleic Acid Chemistry, Wiley & Sons, Inc. N. York, 2005
  • [16] R.T. Pon, N. Usman, K.K. Ogilvie, Biotechniques, 1988, 6, 768.
  • [17] M.J. Damha, P.A. Giannaris, S.V. Zabarylo, Nucleic Acids Res., 1990,18, 3813.
  • [18] G.M. Bonora, Appl. Biochem. Biotechnol., 1995, 54, 17.
  • [19] WE. Rapp, 1996, [w:] Combinatorial Peptide and Non-Peptide Libraries: A Handbook, (G. Jung, ed.), ss. 425--464. VCH, Weinheim.
  • [20] F.X. Montserrat, A. Grandas, E. Pedroso, Nucleos. Nucleot, 1994,12, 967.
  • [21] M.M. Greenberg, J.L. Gilmore, J. Org. Chem., 1994, 59, 746.
  • [22] R. Schwyzer, E. Felder, P. Failli, Helv. Chim. Acta, 1984, 67, 1316.
  • [23] A.V. Azhayev, Tetrahedron, 1999, 55, 787.
  • [24] A.V. Azhayev, ML. Antopolsky, Tetrahedron, 2001, 57, 4977.
  • [25] G.R. Gough, M. J. Brunden, P. T. Gilham, Tetrahedron Lett., 1983, 24, 5321.
  • [26] R. Cosstick, F. Eckstein, Biochemistry, 1985, 24, 3630.
  • [27] J.S. Debear, J. A. Hayes, M. P. Koleck, G. R. Gough, Nucleos. Nucleot, 1987, 6, 821.
  • [28] W.J. Stec, A. Grajkowski, M. Koziołkiewicz, B. Uznański, Nucleic Acid Res., 1991, 19, 5883.
  • [29] W.J. Stec, A. Grajkowski, A. Kobylańska, B. Karwowski, M. Koziołkiewicz, K. Misiura, A. Okruszek, A. Wilk, P. Guga, M. Boczkowska, J. Am. Chem. Soc, 1995,117, 12019.
  • [30] K.P. Stengle, W. Pfleiderer, Tetrahedron. Lett., 1990, 31, 2549.
  • [31] J. Weiler, W. Pfleiderer, Nucleos. Nucleot., 1995,14, 917.
  • [32] R.S. Matson, J.B. Rampa, P.J. Coassin, Anal. Biochem., 1994, 217, 306.
  • [33] R.S. Matson, J.B. Rampa, S.L. Jr. Pentoney, P.D. Anderson, P.J. Coassin, Anal. Biochem., 1995, 224, 110.
  • [34] M.S. Weinert, R.S. Matson, J.B. Rampa, P.J. Coassin, C.T. Caskey, Nucleic Acids Res., 1994, 22, 1701.
  • [35] G. Cohen, J. Deutsch, J. Fineberg, A. Levine, Nucleic Acids Res., 1997, 25, 911.
  • [36] W.T. Markiewicz, K. Adrych-Rozek, K. Markiewicz, A. Zebrowska, A. Astriab, [w:] Innovation and Perspectives In Solid Phase Sytithesis: peptides, proteins and nucleic acids: biological and biomedical applications, (R. Epton, ed.), 1994, ss. 339-346. Mayflower Worldwide, Birmingham.
  • [37] L. McBride, M.H. Caruthers, Tetrahedron Lett., 1983, 24, 5843.
  • [38] C.B. Reese, Org. Biomol. Chem., 2005, 3, 3851.
  • [39] J.B. Chattopadhayaya, C.B. Reese, J. Chem. Soc, Chem. Commun., 1978, 639.
  • [40] N.S. Corby, G.W. Kelner, A.R. Todd, J. Chem. Soc, 1952, 3669.
  • [41] P.I. Garegg, T., Regberg, J. Stawiński, R. Stromberg, Chem. Scr., 1985, 25, 280.
  • [42] P.J. Garegg, T., Regberg, J. Stawiński, R. Stromberg, Chem. Scr., 1986, 26, 59.
  • [43] J. Stawiński, R. Stromberg, Meth. Mol. Biol., 2005,288, 81.
  • [44] T. Wada, Y. Sato, F. Honda, S. Kawahara, M. Sekine, J. Am. Chem. Soc, 1997,119, 12710.
  • [45] P.P. Kung, R.A. Jones, Tetrahedron Lett., 1992, 33, 5869.
  • [46] A. Andrus, J.W. Efcavitch, L.J. McBride, B. Giusti, Tetrahedron Lett., 1988, 29, 861.
  • [47] V.A. Effimov, A.L. Kalinkina, O.G. Chakhmakhcheva, Nucleic Acids Res., 1993, 21, 5337.
  • [48] PJ. Garegg, I. Lindh, T. Regberg, J. Stawiński, R. Stromberg, C. Henrichson, Tetrahedron Lett., 1986,27,4051.
  • [49] PJ. Garegg, I. Lindh, T. Regberg, J. Stawiński, R. Stromberg, C. Henrichson, Tetrahedron Lett., 1986, 27, 4055.
  • [50] B.C. Froehler, M.D. Matteucci, Tetrahedron Lett., 1986, 27, 469.
  • [51] H. Seliger, R. Rósch, DNA Cell Biol., 1990, 9, 691.
  • [52] B.C. Froehler, Tetrahedron Lett., 1986, 27, 5575.
  • [53] S. Agrawal, J.Y. Tang, Tetrahedron Lett., 1990, 31, 7541.
  • [54] PJ. Garegg, T., Regberg, T. Stawiński, R. Stromberg, Nucleos. Nucleot., 1987, 6, 655.
  • [55] S. Sigurdsson, R. Str6mberg, J. Chem. Soc. Perkin Trans., 2002,2, 1682.
  • [56] V.A. Effimov, I.Y. Dubey, Bioorg. Khim., 1990, 16, 211
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0011-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.