PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompleksy alkoholanów Ti(IV) i Zr(IV) z ligandami O-donorowymi. Synteza, charakterystyka strukturalna i zasotosowania

Autorzy
Identyfikatory
Warianty tytułu
EN
Ti(IV) and Zr(IV) alkoxo complexes with O-donor ligands. Synthesis, structural characterization and applications
Języki publikacji
PL
Abstrakty
EN
Extensive studies of complexes of titanium(IV) and zirconium(IV) alkoxides with O-donor ligands observed for the last few years are a result of their wide applications in nanomaterial technologies. Various physicochemical properties of TiO2 and ZrO2 including high reference factor (n = 2,616-2,903 TiO2), low absorption in visible range, photoluminescence, high dielectric constant (?TiO2 = 120 for rutile), high stability and chemical resistance have significant influence on their use. Thin metal oxide layers are prepared by vaporization and condensation methods [1], hydrolysis in the flame [2], vacuum deposition, sol-gel techniques, and also chemical vapor deposition (CVD). The last two methods are most often used to prepare high quality ceramic materials, thin metal oxide layers, organic-inorganic hybrid polymers, dopped materials (M2O/M'; M = Ti, Zr; M' = Cu, Ag, Au, Pt, Pd) as well as mesoporous materials [3-15]. In both techniques a very important role is played by precursors, which influence CVD process, and the structure of deposited layers. Ti(IV) and Zr(IV) alkoxides (M(OR)4) are usually used as CVD precursors of thin TiO2 and ZrO2 layers. However, high reactivity of M(OR)4 towards nucleophilic reagents, in particularly hydrolysis and condensation of metal alkoxides, lead to precipitation of oxo-polymers. In order to stabilize the alkoxo precursor, Ti(IV) and Zr(IV) complexes containing anionic bidendate groups, such as ?-diketones, carboxylates, alkylamides, sulfonates have been studied [14-17]. In the presented paper, the review of synthetic methods and structural characterization of the following type of complexes [M(OR)4-x(L)x] (M = Ti(IV), Zr(IV), OR = alkoxo ligand, L = ?-diketones, carboxylates) has been carried out. The volatile properties of these compounds as well as their low reactivity towards water caused that above mentioned complexes are used as TiO2 and ZrO2 precursors in CVD processes and therefore a special attention has been paid to this problem. Substitution of alkoxo groups by ?-diketonate ligands in the alkoxide/?-diketonate molar ratio of 1:1 makes possible the synthesis of monomeric complexes of the general formula [Ti(OR) 2 (?-diketonate) 2]. The use of an excess of ?-diketonate (1:2) leads to the formation of dimeric complexes ([Ti(OR)3(?-diketonate)] 2 (Fig. 2) [27]. Sensitivity of these compounds to moisture was significant lower than the parent Ti(IV) alkoxides. Suitable volatility of the mentioned complexes and thermal decomposition to TiO2 caused that their use as CVD precursors is possible. Deposition experiments proved that pure TiO2 layers of anatase form were obtained at temperatures higher than 573 K using [Ti(dpm) 2 (OiPr)v] [25] and [Ti(mpd)(mdop)(m-OMe)] 2 [93] as precursors. From Zr(IV) ?-diketonate derivatives, only [Zr(OR) 2 (thd) 2] (R = OiPr, tBu) and [Zr(OiPr)3(thd)] 2 were used for the deposition of ZrO2 by CVD methods [98]. According to the literature reports, above mentioned ?-diketonates were less reactive and easier to handle than parent alkoxides, but their volatility was significantly lower. ZrO2 layers were also prepared using [Zr(acac) 2 (hfip) 2] but in deposited films, traces of fluorine contaminations were observed [103]. Oxo-alkoxo carboxylate Ti(IV) derivatives were synthesized in reactions of Ti(IV) alkoxides with carboxylic acids (Fig. 4). The structure of these complexes consists of oxo-metallic skeletons (Fig. 5), which size and structure depends on (a) metal alkoxide/carboxylic acid molar ratio, (b) type of alkoxide and carboxylate ligand, and (c) reaction temperature. Results of these works suggest that Ti(IV) complexes, which structure consists of [Ti6O6(OR4)6(OOCR')6] (R = OiPr, nBu, iBu, R' = H, Me, tBu, CH2tBu, C(CH3)2Et, C6H4Oph) clusters are the most stable (Fig. 7) [34, 44]. These types of Ti(IV) complexes were also prepared in the reaction of Ti(IV) trimethylsiloxide with 2 fold exces of organic acids [45]. Thermolysis of [Ti6O6(OR4)6(OOCR')6] proceeds with their partialy decomposition and formation of a volatile and stable Ti(IV) alkoxide and Ti(IV) carboxylate [43]. Results of CVD experiments confirm that these types of complexes have promising properties as titanium dioxide precursors [88, 94]. Thin titanium dioxide films have been deposited in the temperature range 673-873 K on Si(111) substrates. The structure and surface morphology of the layers change with an increase of temperature from the large grain of TiO2 anatase (TD = 713-733 K), to close-packed crystals of rutile form (TD = 853-873 K). A result of the reaction of Zr(IV) alkoxides with organic acids are oxo/hydroxo Zr(IV) carboxylate or oxo/hydroxo Zr(IV) carboxylate alkoxides (Fig. 9) [57-59]. Their low volatility and high thermal stability makes them unsuitable for CVD processes. Application of fluorinated carboxylate ligands increases the volatility of these compounds. ZrO2 layers have been deposited by CVD using ([Zr6O4(OH)4(OiPr)6(OOCR')6] (R' = C2F5, C3F7) as precursors, at ~853 K. Analysis of the literature data showed that carboxylate substituted oxozirconium complexes can be applied for the preparation of inorganic-organic hybrid polymers [104, 105].
Rocznik
Strony
209--236
Opis fizyczny
bibliogr. 113 poz., tab., wykr.
Twórcy
autor
  • Wydział Chemii, Uniwersytet Mikołaja Kopernika, ul. Gagarina 7, 87-100 Toruń
Bibliografia
  • [1] J.D.G. Ramsey, R.G. Avery, J. Mater. Sci., 1974, 1681.
  • [2] P. Kleinschmit, Speciality Inorganic Materials, ed. R Thompson Special Publ. (London: Roy. Soc. Chem.), 1980,40, 196.
  • [3] E. Scolan, C. Sanchez, Chem. Mater., 1998, 10, 3217
  • [4] R.L. Putnam, N. Nakagawa, K.M. McGrath, N. Yao, I.A. Aksay, S.M. Gruner, A. Navrotsky, Chem. Mater., 1997. 9, 2690.
  • [5] Schubert, Chem. Mater.. 2001, 13, 3487.
  • [6] U. Schubert, N. Hiising, A. Lorenz, Chem. Mater., 1995, 7, 2010.
  • [7] Y. Gao, N. Roy, J. Matison, U. Schubert, B. Moraru, Chem. Mater., 2002, 14, 4522.
  • [8] A. Conde-Gallardo, M. Guerrero, N. Castillo, A.B. Soto, R. Fragoso, J.G. Cabanas-Moreno, Thin Solid Films, 2005, 473, 68.
  • [9] H.Y. Ha, S.W. Nam, T.H. Lim, I.-H. Oh, S.-A. Hong, J. Membrane Sci., 1966, 111. 81.
  • [10] E. Halary-Wagner, T. Bret, P. Hoffmann, Chem. Vap. Dep., 2005, 11, 21.
  • [11] K. Kukli, M. Ritala, M. Leskela, Chem. Vap. Dep., 2000, 6, 297.
  • [12] A.C. Jonem, H.C. Aspinall, P.R. Chalker, R.J. Porter, T.D. Manning, Y.F. Loo, R. O'Kane, J.M. Gaskell, L.M. Smith, Chem. Vap. Dep., 2006, 12, 83.
  • [13] M. Thelakkat. C. Schmitz, H.-W. Schmidt, Adv. Mater., 2002, 14, 577.
  • [14] J. Arbiol, J. Cerda, G. Dezanneau, A. Cerera, F. Peiró, A. Cornet, J.R. Morante. J. Appl. Phys., 2002, 92, 853.
  • [15] T. Bokhimi, A. Morale, O. Novaro, T. López, O. Chimal, M. Asomoza, R. Gómez, Chem. Mater., 1997, 9, 2616.
  • [16] C. Sanchez, M. In, J. Non-Cryst. Solids, 1992, 147,148, 1.
  • [17] S. Hino, M. Nakayama, K. Takahashi, H. Funakubo, E. Tokumiitsu, Japa, J. Appl. Phys., Part 1, 2003,42,6015.
  • [18] T. Kemmitt, M. Daglish, Inorg. Chem., 1998, 37, 2063.
  • [19] S.F. Pedersen, J.C. Dewan, R.R. Eckman, K.B. Sharpless, J. Am. Chem. Soc, 1987,109, 1279.
  • [20] R.E. Reevers, L.W. Marzeno, Jr., J. Am. Chem. Soc. 1954, 76, 2533.
  • [21] A. Yamamoto, S. Kambara, J. Am. Chem. Soc. 1957, 79, 4344.
  • [22] D.C. Bradly, C.E. Holloway, J. Chem. Soc. (a), 1969, 282.
  • [23] P. Comba, H. Jakob, B. Nuber, B.K. Keppler, Inorg. Chem., 1994. 33, 3396.
  • [24] H. Yamazaki, T. Tsuyama, I. Kobayashi, Y. Sugimori, Jpn. J. Appl. Phys. 1992,31. 2995.
  • [25] V.V. Krisyuk, A.E. Turgambaeva, I.K. Igumenov, V.G. Bessergenev, L.V. Khemelinskii, R.J.F. Pereira, Chemical Vapor Deposition (Eds. A.D. Allendorf, T.M. Besmann), Electrochemical Soc. Proc, Vol. 2000-13. The Electrochemical Socjety, Pennington, NJ 2000.
  • [26] E. Dubler, R. Buschmann, H.W. Schmalle, J. Inorg. Biochem., 2003, 95, 97.
  • [27] M. Balog, M. Schieber, J. Cryst. Growth 1972. 17, 298.
  • [28] R.J. Errington, J.R.W. Clegg, R.A. Coxall, J.M. Sherwood, Polyhedron, 1998, 17, 659.
  • [29] P.D. Moran, C.E.F. Rickard, G.A. Bowmaker, R.P. Cooney, Inorg. Chem. 1998,37, 1417.
  • [30] K. Woo, W.I. Lee, J.S. Lee, S.O. Kang, Inorg. Chem., 2003, 42, 2378.
  • [31] K.C. Pande, R.C. Mehrotra, Z. Anorg. Allg. Chem., 1957, 290, 95.
  • [32] K.C. Pande, R.C. Mehrotra, Z. Anorg. Allg. Chem., 1957,291, 97.
  • [33] I.D. Varma, R.C. Mehrotra, Z. Prakt. Chem., 1959, 8. 235.
  • [34] R. Papiernik. L.G. Hubert-Pfalzgraf. J. Vaissermann. M.C.H.B. Goncalves. J. Chem. Soc. Dalton Trans., 1998,2285.
  • [35] X. Lei, M. Slang, T.P. Fehlner. Organometallics, 1996, 15, 3779.
  • [36] X. Lei. M. Slang, T.P. Fehlner. Organometallics, 1997, 16, 5289.
  • [37] T.J. Boyle, T.M. Alam, C.J. Tafoya, B.L. Scolt, Inorg. Chem. 1998, 37, 5588.
  • [38] T.J. Boyle, R.P. Tyner, T.M. Alam, B.L. Scott, J.W. Ziller, B.G. Potter, Jr., J. Am. Chem. Soc. 1999, 121, 12104.
  • [39] N. Steunou, F. Robert, K. Boubekeur, F. Ribot, C. Sanchez, Inorg. Chim. Acta, 1998, 279, 144.
  • [40] I. Laaziz, A. Larbot, C. Guizard, J. Durand, L. Cot, J. Joffre, Acta Cryst. Sect. C, 1990, 46, 2332.
  • [41] S. Doeuff, Y. Dromzee, F. Taulelle, C. Sanchez, Inorg. Chim. Acta, 1989, 28, 4439
  • [42] TJ. Boyle, T.M. Alam. E.R. Mechenbeir, B.L. Scott, J.W. Ziller, Inorg. Chem. 1997, 36, 3293.
  • [43] P. Piszczek, Polyhedron, 2007, 26, 93.
  • [44] P. Piszczek, A. Grodzicki, M Richert, A. Wojtczak, Inorg. Chim. Acta, 2004, 357, 2769.
  • [45] P. Piszczek, M. Richert, A. Wojtczak, Polyhedron, 2008, 27, 602.
  • [46] L. Gautier-Luneau, A. MOSFET, MOSFET. Gały, Z. Krystallogr. 1987, 180, 83.
  • [47] P.S. Ammala, S.R. Batten, CM. Kepert, L. Spiccia, A.M. van den Bergen, B.O. West, Inorg. Chim.Acta, 2003. 353, 75.
  • [48] G. Kickelbick, U. Schubert, Eur. J. Inorg. Chem. 1998, 159.
  • [49] P. Piszczek, M. Richert, A. Grodziski, T. Głowiak, A. Wojtczak, Polyhedron, 2005, 24. 663.
  • [50] M.J. Percy, J.R. Bartlett, L. Spiccia, B.O. West, J.L. Woolf'rey, J. Sol-Gel Sci. Techn., 2000, 19, 315.
  • [51] U. Patii, R. Thomas, A. Milanov, R. Bhakta, P. Ehrhart, R. Waser, R. Becker, H.W. Becker, M. Winter, K. Merz, R.A. Fischer, A. Devi, Chem. Vap. Dep., 2006, 12, 172.
  • [52] P.A. Williams, J.L. Roberts, A.C. Jonem, P.R. Chalker, N.L. Tobin, J.F. Bickley, H.O. Davies, L.M. Smith, T.J. Leedham, Chem. Vap. Dep., 2006, 8, 163.
  • [53] U.B. Saxena, V.K. Mathur, R.C. Mehrotra, D. Radford, J. Chem. Soc. A, 1970, 904.
  • [54] K.A. Fleeting, P. O'Brain, D.J. Otway, A.J.P. White. D.J. Williams, AC. Jones, Inorg. Chem., 1999, 38, 1432.
  • [55] M.Y. Reza, H. Matsushima, M. Koikawa, M. Nakashima, T. Tokii, Polyhedron, 1999, 18, 787.
  • [56] G.Y. Guo. Y.L. Chen, Ceramics Int., 2004, 30, 469.
  • [57] P. Piszczek, A. Radtke, A. Grodzicki, A. Wojtczak, J. Chojnacki, Polyhedron, 2007, 26, 679.
  • [58] G. Kickelbick, U. Schubert. Chem. Ber. 1997, 130, 473.
  • [59] G. Kickelbick, P. Wiede, U. Schubert, Inorg. Chim. Acta, 1999, 1.
  • [60] B. Moraru, S. Gross, G. Kickelbick, G. Trimmel, U. Schubert, Monatsh. Chem., 2001,132, 993.
  • [61] T.J. Boyle, L.A. Ottley, M.A. Rodrigez, Polyhedron, 2005, 24, 1727.
  • [62] M.I. Liter, J.A. Navio, J. Photoche. Photobiol. A, Chem., 1996, 98. 171.
  • [63] K. Ikeda, K. Hashimoto, A. Fujishima, J. Electrochem. Chem. 1997, 437, 241.
  • [64] X. Zhang, M. Zhou, L. Lei, Karbon, 2005, 43, 1700.
  • [65] L. Wachowski, A. Grodzicki. P. Piszczek, M. Richert, M. Hofman, React. Kinet. Catal. Lett., 2007, 91, 93.
  • [66] A.C. Jonem, T.J. Leedham, J. Brooks, H.O. Davies, J. Phys. IV, 1999, 9, Pr8-553.
  • [67] K. Nakaso, K. Okuyama, M. Shimada, S.E. Pratsinis, Chem. Eng. Sci. 2003, 58, 3327.
  • [68] A. Chemseddine, T. Moritz, Eur. J. Inorg. Chem., 1999, 8. 2073.
  • [69] M.L. Hitchman, J. Zhao, J. Phys. IV, 1999, 9, Pr8-357.
  • [70] J.-S. Chen, S. Chao, J.-S. Kao, G.-R. Lai, W.-H. Wang, Appl. Opt. 1997, 36, 4403.
  • [71] L.F.O. Furtado, A.D.P. Alexiou, L. Goncalves, H.E. Toma, K. Araki, Anegw. Chem., 2006, 118, 3215.
  • [72] M. Thelakkat, C. Schmitz, H.-W. Schmidt. Adv, Mater. 2002, 14, 577.
  • [73] W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B. 2000. 70. 261.
  • [74] V. Melnyk, V. Shymanovska, G. Puchkovska, T. Bezrodna, G. Klishevich, J. Mol. Struć. 2005, 744-747, 573.
  • [75] T. Houzouji, N. Saito, A. Kudo, T. Sakata, Chem.Phys. Lett., 1996, 254, 109.
  • [76] H.-K. Ha, M. Yashimoto, H. Koinuma, B.-H. Moon, H. Ishiwara, Appl.Phys. Lett., 1999, 68,2965.
  • [77] S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach. S.V.R. Mastrangelo, J. Am. Ceram. Sci.. 1990, 73, 309.
  • [78] K. Kukli, M. Ritala, M. Schuisky, M. Leskela, T. Sajavaara. J. Keinonen, T. Uustare, Chem. Vap. Deposition, 2000, 6. 303.
  • [79] V. Pore, A. Rahtu, M Leskela, M. Ritala, T. Sajavaara, J. Keinonen, Chem. Vap. Deposition. 2004. 10, 143.
  • [80] B.-C. Kang, S.-B. Lee, J.-H. Boo. Surface and Coating Technology, 2000, 131. 88.
  • [8l] D.-J. Won, C.-H. Wang, H.-K. Jang, D.-J. Choi, Appl. Phys. A.. 2001, 73, 595.
  • [82] C.-K, Jung, B.-C. Kang, H.-Y. Chae, Y.-S. Kim, M.-K. Seo, S.-K. Kim, S.-B. Lee, J.-H. Boo, Y.-J. Moon, J.-Y. Lee, J. Cryst, Growth, 2002, 235. 450.
  • [83] J.S. Lee. H.W. Song, W.J. Lee, B.G. Yu, K. No, Thin Solid Films. 1996. 287, 120.
  • [84] M.Morstein, M. Karches, C. Bayer, D. Casanova, P.R. von Rohr. Chem. Vap. Deposition, 2000, 6, 16.
  • [85] J.J- Gallegos III, T.L. Ward, T.J. Boyle, M.A. Rodriguez, L.P. Francisco, Chem. Vap. Deposition, 2000,6,21.
  • [86] A.E. Turgambaeva, V.V. Krisyuk, S.V. Sysoev, I.K. Igumenov, Chem. Vap. Deposition, 2001, 7, 121.
  • [87] J.S. Lee, S.H. Hong, K. Woo. W.I. Lee, Chem. Vap. Deposition, 2004, 10, 67.
  • [88] P. Piszczek, M. Richert, A. Grodzicki, E. Talik, J. Heiman, Chem. Vap. Deposition 2004, 11, 399.
  • [89] W.S. Rees, Jr, CVD of Nonmetals, VCH Weinheim, 1996, 372.
  • [90] M. Schuisky, A, Harsta, J. Phys. IV France 1999, 9, 381.
  • [91] K. Kukli, M. Ritala, M. Schuisky, M. Leskela, T. Sajavaara, J. Keinonen, T. Uustare, A. Harsta, Chem. Vap. Deposition 2000, 6, 303.
  • [92] C.J. Taylor, D.C. Gilmer, D.G. Colombo, G.D. Wilk, S.A. Campbell, J. Roberts, W.L. Gladfelter, J. Am. Chem. Soc. 1999, 121, 5220.
  • [93] J.S. Lee, S.-H. Hong, K. Woo, W.I. Lee, Chem. Vap. Deposition, 2004, 10, 67.
  • [94] P. Piszczek, M. Richert, A. Radtke, 9th Polish Supramolecular Chemistry Network Conference NANO 2007, Jagiellonian University, Kraków 2007, 66.
  • [95] D.J. Burleson, J.T. Roberts, W.L. Gladfelter, S.A. Campbell, R.C. Smith, Chem. Mater., 2002, 14, 1269.
  • [96] A.C. Jones, T.J. Leedham, P.J. Wright, M.J. Crosbie, P.A. Lane. D.J. Williams. K.A. Fleeting, D.J. Otway, P. O'Brien, Chem. Vap. Deposition 1998. 4. 46.
  • [97] U. Patii, R. Thomas, A. Milanov, R. Bhakta, P. Ehehart, R. Waser, R. Becker, H.-W. Becker, M. Winter, K. Merz, R.A. Fischer, A. Devi, Chem. Vap. Deposition 2006, 12, 172.
  • [98] A.C. Jones, T.J. Leedham, P.J. Wright, M.J. Crosbie, D.J. Williams, K.A. Fleeting, H.O. Davies, D.J. Otway, P. O'Brien, Chem. Vap. Deposition 1998, 4, 197.
  • [99] K.A. Fleeting, P. O'Brien, D.J. Otway, A.J.P. White, D.J. Williams, A.C. Jones, Inorg. Chem.. 1999, 38, 1432.
  • [100] R.C. Smith, T. Ma, N. Hoilien. L.Y. Tsung, M.J. Bevan, L. Colombo, J. Roberts, S.A. Campbell, W.L. Gladfelter, Adv. Mater. Opt. Electron., 2000, 10, 105.
  • [101] D.G. Colombo, D.C. Gilmer, J.V.G. Young, S.A. Campbell, W.L. Gladfelter, Chem. Vap. Deposition 1998,4,220.
  • [102] A.C. Jones, Chem. Vap. Deposition 1998, 4, 169.
  • [103] M. Morstein, I. Pozsgai, N.D. Spencer, Chem. Vap. Deposition 1999, 5, 151.
  • [104] U. Schubert, Chem. Mater., 1995, 7, 2010.
  • [105] M. Hong, Crystal Growth Des., 2007, 7, 10.
  • [106] G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications, Wiley-VCH, 2007, 433.
  • [107] U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich, C. Chau. Chem. Mater.. 1992. 4, 291.
  • [108] B. Moraru, G. Kickelbick, U. Schubert, Eur. J. Inorg. Chem., 2001, 1295.
  • [109] G. Trimmel, P. Fratzl, U. Schubert, Chem. Mater., 2000, 12, 602.
  • [110] G. Kickelbick, U. Schubert, Monatsh. Chem., 2001, 132, 13.
  • [111] U. Schubert, Chem. Mater., 2001, 13, 3487.
  • [112] B. Moraru, N. Httsing. G. Kickelbick,U. Schubert, P. Fratzl, H. Peterlik, Chem. Mater., 2002, 14, 2732.
  • [113] Y. Gao, N.R. Choudhury, J. Matison, U. Schubert, B. Moraru, Chem. Mater., 2002, 14, 4522.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0011-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.