PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza koroli

Identyfikatory
Warianty tytułu
EN
The synthesis of corroles
Języki publikacji
PL
Abstrakty
EN
Corroles, one carbon shorter analogues of porphyrins emerged a few years ago as an independent research area (Fig. 1) [1-3]. Their coordination chemistry, photophysics, synthesis, chemical transformations, electrochemistry and other properties have recently been studied in great detail [7-11]. Discovered in 1964 [15], for many years they have been mainly synthesized via a,c-biladienes cyclization [19-20]. Multistep a,c-biladienes preparation discouraged broader range of chemists from studying corroles (Scheme 2). Since initial reports by Gross [17, 18] and Paolesse [16] revealing one-pot syntheses of meso-substituted corroles from aldehydes and pyrrole, this reaction has been subjected to many refining studies (Scheme 4, 5; Table 2) [23-28]. As a result yields have been improved to ~ 15%. The one-pot synthesis of meso-substitued A3-corroles from aldehydes and pyrroles consists of two independent steps. The first step is an acid-mediated electrophilic substitution to yield a mixture of various aldehyde-pyrrole oligocondensates including bilane (tetrapyrrane) - the direct precursor of corrole (Scheme 6). The second step is the oxidative ring-closure. Maximizing bilane formation while minimizing the formation of dipyrromethanes, tripyrrane and higher oligocondensate is a difficult task due to the similar reactivity of all these compounds [30-32]. Recently new and efficient conditions for the synthesis of meso-substituted corroles have been developed [33]. The first step, namely the reaction of aldehydes with pyrrole, was carried out in a water-methanol mixture in the presence of HCl. A relatively narrow distribution of aldehyde-pyrrole oligocondensates was controlled by their solubility in the reaction medium. After thorough optimization of various reaction parameters high yields of bilanes were obtained. As a result, many A3-corroles were obtained in the highest yield (~25-30%) reported to date. Corroles bearing two various substituents at meso positions were synthesized for the first time from dipyrromethanes and aldehydes (Scheme 10) [35]. This method continues to prevail in the literature [36-38]. Performance of this reaction in H2O/MeOH/HCl mixtures allows to obtain trans-A2B-corroles in yields up to 56% (Scheme 11) [33]. Last developments in the chemistry of corroles make these compounds more accessible than respective porphyrins.
Rocznik
Strony
165--185
Opis fizyczny
bibliogr. 45 poz., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] D. Dolphin. The Porphyrins, Academic: New York, 1978, Vol. 1-8.
  • [2] K.M. Smith, Porphyrins and Metalloporphyrins. Elsevier: Amsterdam, 1976.
  • [3] K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook, Academic Press: San Diego, 2000.
  • [4] (a) F.P. Montforts, M. Glasenapp-Breiling, Próg. Heterocycl. Chem., 1998. 10, 1. (b) W. Flittsch. Adv. Heterocycl. Chem., 1988, 43. 73.
  • [5] (a) P.H. Hynninen, Chlorophylls, H. Sheer, Ed., CRC Press: Boca Raton, FL, 1991, pp 145-209. (b) M.R. Wasielewski, Chlorophylls, H. Sheer, Ed., CRC Press: Boca Raton, FL, 1991, pp 269-286.
  • [6] M. Triesschejin, M. Ruevekamp, M. Alders, P. Baas, F.A. Stewart, Photochemistry and Photobiology, 2004. 80, 236.
  • [7] T. Ding, E.A. Aleman, D.A. Modarelli, C.J. Ziegler, J. Phys. Chem. A, 2005, 109,7411.
  • [8] J.L. Sessler, S J. Weghorn, Expanded, Contracted & Isomeric Porphyrins, Pergamon, Oxford, 1997. pp 11-125.
  • [9] B. Ventura, A.D. Esposti, B. Koszarna, D.T. Gryko, L. Flamigni, New. J. Chem., 2005, 29, 1559.
  • [10] R. Grigg, R.J. Hamilton, M.L. Josefowicz, C.H. Rochester, R.T. Terrell, H. Wickwar, J. Chem. Soc, Perkin Trans. 2, 1973, 407.
  • [11] A. Mahammed, J.J. Weaver, H.B. Gray, M. Abdelas, Z. Gross, Tetrahedron Lett.. 2003, 44, 2077.
  • [12] C. Tardieux, C.P. Gros, R. Guilard, J. Heterocyclic Chem., 1998, 35, 965.
  • [13] R. Guilard, D.T. Gryko, G. Canard, J.M. Barbe, B. Koszarna, S. Brandes, M. Tasior, Org. Lett., 2002.4,4491.
  • [14] (a) Y.S. Balazs, I. Saltsman, A. Mahammed, E. Tkachenko, G. Golubkov, J. Levine, Z. Gross, Magn. Reson. Chem., 2004, 42, 624. (b) J.M. Dyke, N.S. Williams, I.S. Woolsey, Mol. Physics, 1971. 20, 1149. (c) A. Ghosh, K. Jynge, Chem. Eur. 1, 1997. 3, 823.
  • [15] A.W. Johnson, IT. Kay, J. Chem. Soc, 1965, 1620.
  • [16] R. Paolesse, L. Jaquinod, D.J. Nurco, S. Mini, F. Sagone, T. Boschi, K.M. Smith, Chem. Commun., 1999, 1307.
  • [17] Z. Gross, N. Galili, I. Saltsman, Angew. Chem. Int. Ed., 1999, 38, 1427.
  • [18] Z. Gross, N. Galili, L. Simkhovich, I. Saltsman, M. Botoshansky, D. Blaser, R. Boese, I. Goldberg, Org. Lett., 1999, 1,599.
  • [19] R. Guilard, C.P. Gross, F. Bolze, F. Jerome, Z. Ou, J. Shao. J. Fischer, R. Weiss. K.M. Kadish, Inorg. Chem.. 2001,40, 4845.
  • [20] R. Paolesse, R.K. Pandey, T.P. Forsyth, L. Joquinod, K.R. Gerzevske, D.J. Nurco, M.O. Senge, S. Licoccia, T. Boschi, K.M. Smith, J. Am. Chem. Soc, 1996, 118, 3869.
  • [21] M. Conlon, A.W. Johnson, W.R. Overend, D. Rajapaksa, J. Chem. Soc, Perkin Trans. 1, 1973, 2281.
  • [22] E. Vogel, M. Broring, J. Fink, D. Rosen, H. Schmickler, J. Lex. K.W.K. Chan, Y.D. Wu, D.A. Plattner, M. Nendel, K.N. Houk, Angew. Chem. Int. Ed., 1995, 34, 2511.
  • [23] R. Paolesse, S. Nardis, F. Sagone, R.G. Khoury, J- Org. Chem., 2001, 66, 550.
  • [24] S. Nardis, D. Monti, R. Paolesse, Mini-Rev. Org. Chem., 2005, 2, 546.
  • [25] D.T. Gryko, Eur. J. Org, Chem., 2002, 1735.
  • [26] D.T. Gryko, J.P. Fox, D.P. Goldberg, J. Porphyrins Phthalocyanines, 2004, 8, 1091.
  • [27] I.H. Wasbotten, T. Wondimagegn, A. Ghosh, J. Am. Chem.Soc. 2002. 124, 8104.
  • [28] J.P. Collman, R.A. Decreau. Tetrahedron Lett., 2003. 44, 1207.
  • [29] C.H. Lee, J.S. Lindsey, Tetrahedron, 1994, 50, 11427.
  • [30] J.W. Ka, W.S.Cho, C.H. Lee. Tetrahedron Lett., 2000, 41, 8121.
  • [31] D.T. Gryko, B. Koszarna, Org. Biomol. Chem., 2003, 1, 350.
  • [32] R. Paolesse, A. Marini, S. Nardis, A. Froiio, F. Mandoj, D.J. Nurco, L. Prodi, M. Montalti, K.M. Smith, J. Porphyrins Phthalocyanines, 2003, 7, 25.
  • [33] B. Koszarna, D.T. Gryko, .J. Org. Chem., 2006, 71, 3707.
  • [34] B.J. Littler, Y. Ciringh, J.S. Lindsey, J. Org. Chem., 1999, 64, 2864.
  • [35] D.T. Gryko, Chem. Commun., 2000, 2243.
  • [36] D.T. Gryko, K. Jadach, J. Org, Chem., 2001, 66, 4267.
  • [37] R.P. Brinas, C. Bruckner, Synlett, 2001, 442.
  • [38] CV. Asokan, S. Smeets, W. Dehaen, Tetrahedron Lett., 2001, 42, 4483.
  • [39] B.J. Littler, M.A. Miller, C.H. Hung, R.W. Wagner, D.F. O'Shea, P.D. Boyle, J.S. Lindsey, J. Org. Chem., 1999,64, 1391.
  • [40] B. Koszarna, R. Voloshchuk D.T. Gryko, Synthesis, 2007, 9, 1339.
  • [41] D.T. Gryko, M. Tasior, B. Koszarna, J. Porphyrins Phthalocyanines, 2003, 7, 239.
  • [42] G.R. Geier III, J.F.B. Chick, J.B. Callinan, C.G. Reid, W.P. Auguscinski, J. Org. Chem., 2004, 69, 4159.
  • [43] R.A. Decreau, J.P. Collman, Tetrahedron Lett., 2003,44, 3323.
  • [44] H. Rapoport, N. Castagnoli, J. Am. Chem. Soc, 1962, 84, 2178.
  • [45] J. Sankar. V.G. Anand, S. Venkartaman, H. Rath, T.K. Chandrashekar, Org. Lett., 2002, 4, 4233
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0011-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.