Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give formulations for modal deductive databases and present a modal query language called MDatalog. We define modal relational algebras and give the seminaive evaluation algorithm, the top-down evaluation algorithm, and the magic-set transformation for MDatalog queries. The results of this paper like soundness and completeness of the top-down evaluation algorithm or correctness of the magic-set transformation are proved for the multimodal logics of belief KDI4s5, KDI45, KD4s5s, KD45(m), KD4Ig5a, and the class of serial context-free grammar logics. We also show that MDatalog has PTIME data complexity in the logics KDI4s5, KDI45, KD4s5s, and KD45(m).
Wydawca
Czasopismo
Rocznik
Tom
Strony
85--135
Opis fizyczny
bibliogr. 30 poz.
Twórcy
autor
- Institute of Informatics Warsaw University ul. Banacha 2 02-097 Warsaw, Poland, nguyen@mimuw.edu.pl
Bibliografia
- [1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. AddisonWesley, 1995.
- [2] H. Aldewereld,W. van der Hoek, and J.-J.Ch.Meyer. Rational teams: Logical aspects of multi-agent systems. Fundamenta Informaticae, 63(2-3):159-183, 2004.
- [3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2002.
- [4] M. Cadoli, L. Palopoli, and M. Lenzerini. Datalog and description logics: Expressive power. In S. Cluet and R. Hull, editors, DBPL-6, LNCS 1369, pages 281-298. Springer, 1998.
- [5] D. Calvanese, G. De Giacomo, D. Lembo,M. Lenzerini, and R. Rosati. Data complexity of query answering in description logics. In I. Horrocks, U. Sattler, and F. Wolter, editors, Description Logics, 2005.
- [6] M.J. Cresswell and G.E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.
- [7] F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using equational and order-sorted logic. Theoretical Computer Science, 105:141-166, 1992.
- [8] L. Farinas del Cerro and M. Penttonen. Grammar logics. Logique et Analyse, 121-122:123-134, 1988.
- [9] M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Kluwer Academic Publishers, 1999.
- [10] E. Franconi and S. Tessaris. Rules and queries with ontologies: A unified logical framework. In H.J. Ohlbach and S. Schaffert, editors, PPSWR 2004, LNCS 3208, pages 50-60. Springer, 2004.
- [11] J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages 249-307. Reidel, Dordrecht, 1984.
- [12] R. Goré and L.A. Nguyen. Clausal tableau systems for multimodal logics of belief. Available at http://www.mimuw.edu.pl/_nguyen/papers.html.
- [13] G. Gottlob, E. Grädel, and H. Veith. Linear time Datalog and branching time logic. In Logic-Based Artif. Int., pages 443-467. Kluwer Academic Publishers, 2000.
- [14] B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining logic programs with description logic. In WWW'2003, pages 48-57. ACM, 2003.
- [15] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description logics. In L.P. Kaelbling and A. Saffiotti, editors, IJCAI, pages 466-471. Professional Book Center, 2005.
- [16] Ch. Koch and S. Scherzinger. Lecture notes on database theory. http://www-db.cs.uni-sb.de/teaching/dbth0506/slides/dbth-datalog2.pdf.
- [17] A.Y. Levy and M.-Ch. Rousset. Combining Horn rules and description logics in CARIN. Artificial Intelligence, 104(1-2):165-209, 1998.
- [18] J.W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.
- [19] L.A. Nguyen. Constructing the least models for positive modal logic programs. Fundamenta Informaticae, 42(1):29-60, 2000.
- [20] L.A. Nguyen. The modal query language MDatalog. Fundamenta Informaticae, 46(4):315-342, 2001.
- [21] L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic programs. Fundamenta Informaticae, 55(1):63-100, 2003.
- [22] L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, pages 266-278. Springer, 2004.
- [23] L.A. Nguyen. On modal deductive databases. In J. Eder, H.-M. Haav, A. Kalja, and J. Penjam, editors, Proceedings of ADBIS 2005, LNCS 3631, pages 43-57. Springer, 2005.
- [24] L.A. Nguyen. The data complexity of MDatalog in basic modal logics. In R. Kralovic and P. Urzyczyn, editors, Proceedings of MFCS 2006, LNCS 4162, pages 729-740. Springer-Verlag, 2006.
- [25] L.A. Nguyen. Multimodal logic programming. Theoretical Computer Science, 360:247-288, 2006.
- [26] L.A. Nguyen. Reasoning about epistemic states of agents by modal logic programming. In F. Toni and P. Torroni, editors, Proceedings of CLIMA VI, LNAI 3900, pages 37-56. Springer-Verlag, 2006. A revised version is available at http://www.mimuw.edu.pl/_nguyen/papers.html.
- [27] L.A. Nguyen. Foundations of modal logic programming: The direct approach. Manuscript (served as a technical report), available at http://www.mimuw.edu.pl/_nguyen/papers.html, November 2006 (revised March 2007).
- [28] A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish, D. Pearce, and L.M. Pereira, editors, Logics in Artificial Intelligence, European Workshop, JELIA '94, York, UK, September 5-8, 1994, Proceedings, volume 838 of LNCS, pages 365-378. Springer, 1994.
- [29] H.J. Ohlbach. A resolution calculus for modal logics. In Proceedings of CADE-88, LNCS310, pages 500-516. Springer, 1988.
- [30] M.A. Orgun andW.W. Wadge. Towards a unified theory of intensional logic programming. Journal of Logic Programming, 13(4):413-440, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0010-0053