PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Sound Isolation by Harmonic Peak Partition for Music Instrument Recognition

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Identification of music instruments in polyphonic sounds is difficult and challenging, especially where heterogeneous harmonic partials are overlapping with each other. This has stimulated the research on sound separation for content-based automatic music information retrieval. Numerous successful approaches on musical data feature extraction and selection have been proposed for instrument recognition in monophonic sounds. Unfortunately, none of those algorithms can be successfully applied to polyphonic sounds. Based on recent successful in sound classification of monophonic sounds and studies in speech recognition, Moving Picture Experts Group (MPEG) standardized a set of features of the digital audio content data for the purpose of interpretation of the information meaning. Most of them are in a form of large matrix or vector of large size, which are not suitable for traditional data mining algorithms; while other features in smaller size are not sufficient for instrument recognition in polyphonic sounds. Therefore, these acoustical features themselves alone cannot be successfully applied to classification of polyphonic sounds. However, these features contain critical information, which implies music instruments' signatures. We have proposed a novel music information retrieval system with MPEG-7-based descriptors and we built classifiers which can retrieve the important time-frequency timbre information and isolate sound sources in polyphonic musical objects, where two instruments are playing at the same time, by energy clustering between heterogeneous harmonic peaks.
Wydawca
Rocznik
Strony
613--628
Opis fizyczny
bibliogr. 26 poz., wykr.
Twórcy
autor
autor
  • Department of Computer Science, University of North Carolina at Charlotte, 9201 University City Blvd.Charlotte, NC 28223, USA, xinzhang@uncc.edu
Bibliografia
  • [1] A. Wieczorkowska, J. Wroblewski, P. Synak., D. Slezak: Application of Temporal Descriptors to Musical Instrument Sound, Journal of Intelligent Information Systems, 21(1), 2003, 71-93.
  • [2] Back, A. D.,Weigend, A. S.: A first Application of Independent ComponentAnalysis to Extracting Structure from Stock Returns, International Journal onNeural Systems, 8(4), 1998, 474-484.
  • [3] Balzano, G. J.: What are musical pitch and timbre?, Music Perception- an interdisciplinary Journal, 3, 1986, 297-314.
  • [4] Bregman, A. S.: Auditory scene analysis, the perceptual organization of sound, vol. 3, MIT Press, 1990.
  • [5] Brown, J. C.: Musical instrument identification using pattern recognition with cepstral coefficients as features, Journal of Acousitcal society of America, 105(3), 1999, 1933-1941.
  • [6] C. G. Atkeson, A. W. M., Schaal, S.: Locally Weighted Learning for Control, Artificial Intelligence Review, 11(1-5), Feb 1997, 75-13.
  • [7] Cadoz, C.: Timbre et causalite, Apr 1985, Seminar on Timbre, Institut de Recherche et Coordination Acoustique/ Musique, Paris, France.
  • [8] le Cessie, S., van Houwelingen, J.: Ridge Estimators in Logistic Regression, Applied Statistics, 41(1), 1992, 191-201.
  • [9] Eronen, A., Klapuri, A.: Musical instrument recognition using cepstral coefficients and temporal, the IEEE International Conference on Acoustics, Speech and Signal Processing. Istanbul, Turkey, June.
  • [10] Fujinaga, I., McMillan, K.: Realtie Recognition of Orchestral Instruments, International Computer Music Conference, 2000.
  • [11] Group, M. P. E.: Information Technology - Multimedia Content Description Interface, Part 4: Audio, International Organizaiton For Standardization. ISO/IEC JTC 1/SC 29/WG 11.
  • [12] Herrera. P., Peeters, G., Dubnov, S.: Automatic Classification ofMusical Instrument Sounds, Journal of New Music Research, 32(19), 2003, 3-21.
  • [13] Jensen, K., Arnspang, J.: Binary decision tree classification of musical sounds, the 1999 International Computer Music Conference, Beijing, China, Oct.
  • [14] K. Livescu, J. G., Bilmes, J.: Hidden Feature Models for Speech Recognition Using Dynamic Bayesian Networks, Eurospeech, Geneva, Switzerland, Sep 2003.
  • [15] Kaminskyj, I., Materka, A.: Automatic source identification of monophonic musical instrument sounds, 1, the IEEE International Conference On Neural Networks, 1995.
  • [16] M. Dziubinski, P. D., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks, Journal of Intelligent Information Systems, 24(2/3), 2005, 133-158.
  • [17] Martin, K. D.: Sound-Source Recognition: A Theory and Computational Model, Ph.D. Thesis, MIT, Cambridge, MA,.
  • [18] Martin, K. D., Kim, Y. E.: Musical instrument identification: A pattern-recognition approach, the 136th meeting of the Acoustical Society of America, Norfolk, VA, 1998, 2pMU9.
  • [19] Pollard, H., Jansson, E.: A Tristimulus Method for the Specification of Musical Timbre, Acustica, 51(5), 1982, 162-171.
  • [20] Quinlan, J. R.: C4.5: Programs for Machine Learning, 1993, Talk at San Mateo, CA: Morgan Kaufmann.
  • [21] Ristaniemi, T., Joutsensalo, J.: On the Performance of Blind Source Separation in CDMA Downlink, 34, Workshop on Independent component Analysis and Signal Separation(ICA'99), 1999.
  • [22] Smaragdis, P.: Redundancy Reduction for Computational Audition, A Unifying Approach, Ph.D. Thesis, Media Arts and Sciences Department, MIT.
  • [23] Virtanen, T., Klapuri, A.: Separation of Harmonic Sounds Using Multipitch Analysis and Iterative Parameter Estimation, IEEEWorkshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, 2001.
  • [24] Wieczorkowska, A.: The Recognition Efficiency of Musical Instrument Sounds Depending on Parameterization and Type of a Classifier, Ph.D. Thesis, Technical University of GDansk, Poland.
  • [25] Wieczorkowska, A.: Classification of musical instrument sounds using decision trees, in the 8th International Symposium on Sound Engineering and Mastering, ISSEM'99, 1999.
  • [26] Zweig, G.: Speech Recognition with Dynamic Bayesian Networks, Ph.D. Thesis, Univ. of California, Berkeley, California, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0010-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.