PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Algebraic Structure of Neighborhoods of Cellular Automata-Horse Power Problem-

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a previous paper we formulated and analyzed the structure of neighborhoods of cellular automata in an algebraic setting such that the cellular space S is represented by the Cayley graph of a finitely generated group and the neighbors are defined as a semigroup generated by the neighborhood N as a subset of S, Nishio and Margenstern 2004 [14,15]. Particularly we discussed the horse power problem whether the motion of a horse (knight) fills the infinite chess board or Z^2- that is, an algebraic problem whether a subset of a group generates it or not. Among others we proved that a horse fills Z^2 even when its move is restricted to properly chosen 3 directions and gave a necessary and sufficient condition for a generalized 3-horse to fill Z^2. This paper gives further developments of the horse power problem, say, on the higher dimensional Euclidean grid, the hexagonal grid and the hyperbolic plane.
Wydawca
Rocznik
Strony
397--416
Opis fizyczny
bibliogr. 17 poz., rys.
Twórcy
autor
Bibliografia
  • [1] Babai, L.: The growth rate of vertex-transitive planer graphs, 8th Annual ACM-SIAMSymposium on Discrete Algorithms, 1997.
  • [2] Bergman, C., Slutzki, G.: Computational Complexity of Generators and Nongenerators in Algebra, International Journal of Algebra and Computation, 12, 2002, 719-735.
  • [3] Bollobas, B.: Graph Theory, Springer-Verlag, 1979.
  • [4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra, The millennium edition, Open website, 2000.
  • [5] Chang, J., Ibarra, O., Vergis, A.: On the power of one-way communication, ACM, 35, 1988, 697-726.
  • [6] Codd, E. F.: Cellular Automata, Academic Press, 1968.
  • [7] Klein, A., Kutrib, M.: Fast one-way cellular automata, TCS, 295, 2003, 233-250.
  • [8] Machi, A., Mignosi, F.: Garden of Eden Configurations for Cellular Automata on Cayley Graphs of Groups, SIAM J. Disc. Math., 6, 1993, 44-56.
  • [9] M. Margenstern, New Tools for Cellular Automata of the Hyperbolic Plane, Journal of Universal Computer Science, 6, N_12, (2000), 1226-1252.
  • [10] M. Margenstern, Tiling the hyperbolic plane with a single pentagonal tile, Journal of Universal Computer Science, 8, N_2, (2002), 297-316.
  • [11] M. Margenstern, K. Morita, NP problems are tractable in the space of cellular automata in the hyperbolic plane, Theoretical Computer Science, 259, (2001), 99-128.
  • [12] Markov, A. A.: On the impossibility of certain algorithms in the theory of associative systems, Dokl. Acad. Nauk. USSR (English translation), 55, 1947, 583-586.
  • [13] Newman, M.: Integral Matrices, Academic Press, 1972.
  • [14] Nishio, H., Margenstern, M.: An algebraic Analysis of Neighborhoods of Cellular Automata, Submitted to J.UCS, 2004.
  • [15] Nishio, H., Margenstern, M.: An algebraic Analysis of Neighborhoods of Cellular Automata, Technical Report (kokyuroku) vol. 1375, RIMS, Kyoto University, May 2004, Proceedings of LA Symposium, Feb. 2004.
  • [16] Roka, Z.: One-way cellular automata on Cayley graphs, Theoretical Computer Science, 132, 1994, 259-290.
  • [17] Terrier, V.: Cellular automata recognizer with restricted communication, Technical Report 32, Turku Center for Computer Science, June 2004, Proceedings of DMCS'04.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0010-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.