Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present results of some numerical investigations of second order additive invariants in elementary cellular automata rules. Fundamental diagrams of rules which possess additive invariants are either linear or exhibit singularities similar to singularities of rules with first-order invariant. Only rules which have exactly one invariants exhibit singularities. At the singularity, the current decays to its equilibrium value as a power law ta, and the value of the exponent a obtained from numerical simulations is very close to -1/2. This is in agreements with values previously reported for number-conserving rules, and leads to a conjecture that regardless of the order of the invariant, exponent a has a universal value of 1/2.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
329--341
Opis fizyczny
bibliogr. 20 poz. wykr.
Twórcy
autor
- Department of Computer Science, Brock University St.Catharines, Ontario, Canada, L2S 3AI, hfuks@brocku.ca
Bibliografia
- [1] Belitsky, V., Ferrari, P. A.: Invariant Measures and Convergence for Cellular Automaton 184 and Related Processes, 1998, 1-18, Preprint.
- [2] Belitsky, V., Krug, J., Neves, E. J., Schutz, G. M.: A cellular automaton model for two-lane traffic, J. Stat. Phys., 103, 2001, 945-971.
- [3] Blank,M.: Ergodic properties of a simple deterministic traffic flowmodel, J. Stat. Phys., 111, 2003, 903-930.
- [4] Boccara, N.: Transformations of one-dimensional cellular automaton rules by translation-invariant local surjective mappings, Physica D, 68, 1992, 416-426.
- [5] Durand, B., Formenti, E., R´oka, Z.: Number-conserving cellular automata I: decidability, Theoretical Computer Science, 299, 2003, 523-535.
- [6] Formenti, E., Grange, A.: Number conserving cellular automata II: dynamics, Theoretical Computer Science, 304, 2003, 269-290.
- [7] Fukś, H.: Exact results for deterministic cellular automata traffic models, Phys. Rev. E, 60, 1999, 197-202.
- [8] Fukś, H.: A class of cellular automata equivalent to deterministic particle systems, Hydrodynamic Limits and Related Topics (A. T. L. S. Feng, R. S. Varadhan, Eds.), Fields Institute Communications Series, AMS, Providence, RI, 2000.
- [9] Fukś, H.: Critical behaviour of number-conserving cellular automata with nonlinear fundamental diagrams, J. Stat. Mech.: Theor. Exp., 2004, Art. no. P07005.
- [10] Fukś, H.: Dynamics of the cellular automaton rule 142, Complex Systems, 16, 2006, 123-138.
- [11] Fukś, H., Boccara, N.: Convergence to equilibrium in a class of interacting particle systems, Phys. Rev. E, 64, 2001, 016117.
- [12] Hattori, T., Takesue, S.: Additive conserved quantities in discrete-time lattice dynamical systems, Physica D, 49, 1991, 295-322.
- [13] Krug, J., Spohn, H.: Universality classes for deterministic surface growth, Phys. Rev. A, 38, 1988, 4271-4283.
- [14] Matsukidaira, J., Nishinari, K.: Euler-Lagrange correspondence of cellular automaton for traffic-flowmodels, Phys. Rev. Lett., 90, 2003, art. no.-088701.
- [15] Moreira, A.: Universality and decidability of number-conserving cellular automata, Theor. Comput. Sci., 292, 2003, 711-721.
- [16] Morita, K., Imai, K.: Number-conserving reversible cellular automata and their computation-universality, Theoretical Informatics and Applications, 35, 2001, 239-258.
- [17] Nagatani, T.: Creation and annihilation of traffic jams in a stochastic assymetric exclusion model with open boundaries: a computer simulation, J. Phys. A: Math. Gen., 28, 1999, 7079-7088.
- [18] Nagel, K.: Particle hopping models and traffic flow theory, Phys. Rev. E, 53, 1996, 4655-4672.
- [19] Nishinari, K., Takahashi, D.: Analytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton, J. Phys. A-Math. Gen., 31, 1998, 5439-5450.
- [20] Pivato, M.: Conservation laws in cellular automata, Nonlinearity, 15, 2002, 1781-1793.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0010-0033