Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem considered in this paper is how to approximate sets of objects that are qualitatively but not necessarily spatially near each other. The term qualitatively near is used here to mean closeness of descriptions or distinctive characteristics of objects. The solution to this problem is inspired by the work of Zdzisaw Pawlak during the early 1980s on the classification of objects by means of their attributes. This article introduces a special theory of the nearness of objects that are either static (do not change) or dynamic (change over time). The basic approach is to consider a link relation, which is defined relative to measurements associated with features shared by objects independent of their spatial relations. One of the outcomes of this work is the introduction of new forms of approximations of objects and sets of objects. The nearness of objects can be approximated using rough set methods. The proposed approach to approximation of objects is a straightforward extension of the rough set approach to approximating objects, where approximation can be considered in the context of information granules (neighborhoods). In addition, the usual rough set approach to concept approximation has been enriched by an increase in the number of granules (neighborhoods) associated with the classification of a concept as near to its approximation. A byproduct of the proposed approximation method is what we call a near set. It should also be observed that what is presented in this paper is considered a special (not a general) theory about nearness of objects. The contribution of this article is an approach to nearness as a vague concept which can be approximated from the state of objects and domain knowledge.
Wydawca
Czasopismo
Rocznik
Tom
Strony
407--433
Opis fizyczny
bibliogr. 76 poz., rys.
Twórcy
autor
- Department of Electrical and Computer Engineering, University of Manitoba, 75 Chancellor's Circle, ENGR E2-390,Winnipeg, Manitoba R3T 5V6, Canada, jfpeters@ee.umanitoba.ca
Bibliografia
- [1] Bazan, J. G., Peters, J. F.,Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Wang, G., Szczuka, M., Duntsch, I., Yao, Y. Y. (Eds.), Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC'2005), Regina, Canada, August 31-September 3, 2005, Part I, Lecture Notes in Artificial Intelligence, vol. 3641, Springer-Verlag, Heidelberg (2005) 688-697.
- [2] Bazan, J., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Kęplicz, B. Jankowski, A. Skowron, A. Szczuka, M. (Eds.), Monitoring, Security, and Rescue Tasks in Multiagent Systems (MSRAS'2004), Advances in Soft Computing, Springer, Heidelberg (2005) 191-202.
- [3] Bazan, J., Skowron, A.: On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: Pal, S. K., Bandoyopadhay, S., Biswas, S. (Eds.), First International Conference on Pattern Recognition and Machine Intelligence (PReMI'05) December 18-22, 2005, Indian Statistical Institute, Kolkata, Lecture Notes in Computer Science, vol. 3776, Springer-Verlag, Heidelberg (2005) 720-725.
- [4] Bazan, J., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. Transactions on Rough Sets V: LNCS Journal Subline, LNCS 4100, Springer, Heidelberg (2006) 39-62.
- [5] C.M. Bishop, C.M.: Neural Networks and Pattern Recognition. Oxford University Press, UK (1995).
- [6] Borkowski, M., Peters, J.F.: Matching 2D image segments with genetic algorithms and approximation spaces. Transactions on Rough Sets V, LNCS 4100 (2006), 63-101.
- [7] Feature Extraction: http://en.wikipedia.org/wiki/Feature extraction
- [8] Grzymala-Busse, J.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. Transactions on Rough Sets III (2004) 78-95.
- [9] Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (Eds.): Feature Extraction. Foundations and Applications. Springer, Heidelberg, Studies in Fuzziness and Soft Computing 207, 2006.
- [10] Honderich, T. (Ed.): The Oxford Companion to Philosophy, 2nd Ed. Oxford University Press, UK (2005).
- [11] Jähne, B.: Digital Image Processing, 6th Ed. Springer, Berlin (2005).
- [12] Johnson, S.: A Dictionary of the English Language, 11th Ed. Clarke and Sons, London (1816).
- [13] Kant, I.: Critique of Pure Reason, trans. by N.K. Smith. Macmillan, Toronto (1929).
- [14] De Laguna, T.: Point, line and surface as sets of solids. The Journal of Philosophy 19 (1922) 449-461.
- [15] Lehner, P.N.: Handbook of Ethological Methods, 2nd Ed. Cambridge University Press, UK (1996).
- [16] Düntsch, I., Vakarelov, D.: Region-based theory of discrete spaces: A proximity approach. Technical Report # CS-04-11, Brock University (2004).
- [17] Engelking, R.: General Topology. Heldermann Verlag, Lemgo, Germany (1989).
- [18] Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford, UK (2000).
- [19] Hazarika, S.M.: Qualitative Spatial Change: Space-Time Histories and Continuity. Ph.D. Thesis, supervisor: A.G. Cohn, School of Computing, University of Leeds, Jan. (2005).
- [20] Hazelwinkel, M. (Ed.): Encyclopaedia of Mathematics. Kluwer Academic Publishers, Dordrecht (1995) 213.
- [21] Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge, UK (2000).
- [22] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A.: Rough Fuzzy Hybridization. A New Trend in in Decision-Making. Springer-Verlag, Singapore (1999) 3-98.
- [23] Leśniewski, S.: On foundations of the general theory of sets. In: Stanisław Leśniewski. Collected Works. Surma, S.J., Srzednicki, J.T., Barnett, D.I., and Rickey, F.V., eds. and trans. Kluwer, Netherlands (1992) 227-263.
- [24] Marek, W., Pawlak, Z.: Information storage and retrieval systems: Mathematical foundations. Theoretical Computer Science 1 (1976) 331-354.
- [25] Mendel, J.M., Fu, K.S. (Eds.): Adaptive, Learning and Pattern Recognition Systems. Theory and Applications. Academic Press, London (1970).
- [26] Naimpally, S.A., Warrack, B.D.: Proximity Spaces. Cambridge University Press, London (1970).
- [27] Orłowska, E.: Semantics of Vague Concepts, Applications of Rough Sets, Institute for Computer Science, Polish Academy of Sciences, Report 469, March 1982.
- [28] The Oxford English Dictionary. Oxford University Press, London (1933).
- [29] Pal, S. K. Polkowski, L., Skowron, A. (Eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies, Springer, Heidelberg, 2004.
- [30] Pavel, M.: Fundamentals of Pattern Recognition, 2nd Ed. Marcel Dekker, Inc., NY (1993).
- [31] Pawlak, Z.: Mathematical foundations of information retrieval, Proceedings of Symposium ofMathematical Foundations of Computer Science, September 3-8, 1973, High Tartras, 135-136; see also: Mathematical Foundations of Information Retrieval, Computation Center, Polish Academy of Sciences, Research Report CC PAS Report 101 (1973).
- [32] Pawlak, Z.: Classification of objects by means of attributes, Research Report PAS 429, Institute of Computer Science, Polish Academy of Sciences, ISSN 138-0648, January (1981).
- [33] Pawlak, Z.: Rough Sets, Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences (1981).
- [34] Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11 (1982) 341-356.
- [35] Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20(5) (1984) 469-483.
- [36] Pawlak, Z.: On conflicts. International Journal of Man-Machine Studies 21 (1984) 127-134.
- [37] Pawlak, Z.: On Conflicts (in Polish), Polish Scientific Publishers, Warsaw (1987).
- [38] Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991).
- [39] Pawlak, Z.: Anatomy of conflict. Bulletin of the European Association for Theoretical Computer Science 50 (1993) 234-247.
- [40] Pawlak, Z.: An inquiry into anatomy of conflicts. Journal of Information Sciences 109 (1998) 65-78.
- [41] Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences, vol. 177 (2006) 3-27.
- [42] Pawlak, Z., Skowron, A.: Rough sets: Some extensions, Information Sciences, vol. 177 (2006) 28-40 .
- [43] Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning, Information Sciences, vol. 177 (2006) 41-73 .
- [44] Peters, J.F.: Rough ethology: Toward a Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces. Transactions on Rough Sets, III, LNCS 3400 (2005) 153-174.
- [45] Peters, J.F.: Approximation space for intelligent system design patterns. Engineering Applications of Artificial Intelligence, 17(4) (2004) 1-8.
- [46] Peters, J.F.: Approximation spaces for hierarchical intelligent behavioral system models. In: B.D.-Keplic¸z, A. Jankowski, A. Skowron, M. Szczuka (Eds.), Monitoring, Security and Rescue Techniques in Multiagent Systems, Advances in Soft Computing. Physica-Verlag, Heidelberg (2004) 13-30.
- [47] Peters, J.F., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71 (2-3) (2006) 323-349.
- [48] Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Lindemann, G., Schlingloff, H. (Eds.), Burkhard, H.-D., Czaja, L., Penczek, W., Salwicki, A., Skowron, A., Suraj, Z. (Co-Eds.), Concurrency, Specification and Programming (CS & P), vol. 3, 27-29 Sept. (2006), 434-445.
- [49] Peters, J.F.: Classification of objects by means of features. In: Kacprzyk, J., Skowron, A.: Proc. Special Session on Rough Sets, IEEE Symposium on Foundations of Computational Intelligence (FOCI07), submitted.
- [50] Polkowski, L.: Rough Sets. Mathematical Foundations. Advances in Soft Computing, Physica-Verlag, Heidelberg (2002).
- [51] Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4) (1996) 333-365.
- [52] Polkowski, L., Skowron, A.: (Eds.), Rough Sets in Knowledge Discovery 2, Studies in Fuzziness and Soft Computing 19. Springer-Verlag,Heidelberg (1998).
- [53] Read, S.: Thinking about Logic: An Introduction to the Philosophy of Logic. Oxford University Press, Oxford, New York (1994).
- [54] Rissanen: J.: Modeling by shortes data description. Automatica 14 (1978) 465-471.
- [55] Rissanen, J.: Minimum-description-length principle. In: S. Kotz, N. Johnson (Eds.), Encyclopedia of Statistical Sciences. John Wiley & Sons, New York, NY. (1985) 523-527.
- [56] Russell, B., Whitehead, A.N.: Principia Mathematica, 3 Vols. Cambridge University Press, Cambridge, UK (1927).
- [57] Simons, P: Parts. A Study of Ontology. Clarendon Press, Oxford (1987).
- [58] Skowron, A.: Rough sets and vague concepts. Fundamenta Informaticae, 64 (1-4) (2005) 417-431.
- [59] Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Simulation Councils, San Diego (1995) 18-21.
- [60] A. Skowron, J. Stepaniuk. Tolerance approximation spaces. Fundamenta Informaticae 27(2-3) (1996) 245-253.
- [61] Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: Pal et al. [29] (2204) 43-84.
- [62] Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces, Fundamenta Informaticae, 72 (1-3) (2006) 363-378.
- [63] Skowron, A., Swiniarski, R., Synak, P: Approximation spaces and information granulation. Transactions on Rough Sets III: LNCS Journal Subline, LNCS 3400, Springer, Heidelberg (2005) 175-189.
- [64] Słupecki, J.: Towards a generalized mereology of Leśniewski. Studia Logia VIII (1958) 131-155.
- [65] Smith, N.J.J.: Vagueness as closeness. Australasian J. of Philosophy 83 (2005) 157-183. See http://www.personal.usyd.edu.au/_njjsmith/papers/
- [66] Stepaniuk, J.: Approximation spaces, reducts and representatives, in [52] (1998) 109-126.
- [67] Tinbergen, N.: The Herring Gull'sWorld. A Study of the Social Behavior of Birds. Collins, London (1953).
- [68] Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 1. Computer Science Press, MD (1988).
- [69] Vapnik, V.N.: Statistical Learning Theory. Chichester, UK, Wiley-Interscience, 1998.
- [70] Vakarelov, D., Düntsch, I., Bennett, B.: A note on proximity spaces and connection based mereology. In: Proc. FOIS'01 (2001) 1-12.
- [71] Watanabe, S.: Pattern Recognition: Human and Mechanical. John Wiley & Sons, Chichester, UK (1985).
- [72] Whitehead, A.N.: Process and Reality. MacMillan, N.Y. (1929).
- [73] Witten, I.H., Frank, E.: Data Mining, 2nd Ed. Elsevier, Amsterdam (2005).
- [74] Wojna, A.: Analogy-based reasoning in classifier construction. Transactions on Rough Sets IV: LNCS Journal Subline, LNCS 3700, Springer, Heidelberg, 2005, 277-374.
- [75] Wolski, M.: Similarity as nearness: Information quanta, approximation spaces and nearness structures. In: Lindemann, G., Schlingloff, H. (Eds.), Burkhard, H.-D., Czaja, L., Penczek, W., Salwicki, A., Skowron, A., Suraj, Z. (Co-Eds.), Concurrency, Specification and Programming (CS & P), vol. 3, 27-29 Sept. (2006), 424-433.
- [76] Partial function: http://en.wikipedia.org/wiki/Partial function
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0009-0023