PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mercury fractionation in sediments of the Lower Vistula River (Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Vistula is the second largest river in the Baltic Sea catchment area and provides one of the main inputs to the Baltic. The river and its tributaries flow through some of the major industrialized and urbanised regions of Poland, making it one of the most highly human-impacted rivers in Europe. Although the river status is monitored routinely, little is known about mercury forms in the sediments. This study examines mercury fractionation in the sediments of the lower part of the Vistula River. The results show that the cities along this stretch of river have a relatively low impact on both the mercury forms found in the sediment and its bioavailability in the floodplain soils. The mean concentration of total mercury in the sediments was 65 š14 ng g^-1 dry mass (range 54-92), calculated as the sum of mercury concentrations in the individual fractions. The most abundantly represented of these fractions were mercury bound to sulphides (68 š11%, range 55-82%) and humic matter (19 š10%, range 10-35%), with lower fractions of water-soluble mercury (6.9 š2.9%, range 5.1-13%) and organomercury compounds (6.4 š5.3%, range 0.6-13%). The least abundant fraction observed was acid-soluble mercury (0.3 š0.2%, range 0.1-0.6%). Similar concentrations and fractionation were observed in floodplain soils from Kieżmark, collected 1, 10 and 50 meters from the riverbed.
Rocznik
Strony
79--99
Opis fizyczny
bibliogr. 57 poz., tab., wykr.
Twórcy
autor
autor
  • Department of Environmental Protection, Collegium Polonicum Adam Mickiewicz University, ul. Kościuszki 1, 69-100 Slubice, Poland, boszke@euv-franhfurt-o.de
Bibliografia
  • Bełdowski, J. & Pempkowiak, J. (2003). Horizontal and vertical variabilities of mercury concentration and speciation in sediments of Gdańsk Basin, Southern Baltic Sea. Chemosphere 52(3), 645-654. DOI: 10.1016/S0045-6535(03)00246-7.
  • Biester, H. & Scholz, C. (1997). Determination of mercury phase in contaminated soils. Mercury pyrolysis versus sequential extractions. Environ. Sci. Technol. 31(1), 233-239. DOI:10.1021/es960369h.
  • Biester, H., Müller, G. & Schöler, H.F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci. Total Environ. 284(1-3), 191-203. DOI: 10.1016/S0048-9697(01)00885-3.
  • Birkett, J.W., Noreng, J.M.K. & Lester, J.N. (2002). Spatial distribution of mercury in the sediments and riparian environment of the River Yare, Norfolk, UK. Environ. Pollut. 116(1), 65-75. DOI: 10.1016/S0269-7491(01)00121-X.
  • Bloom, N.S., Preus, E., Katon, J. & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal. Chim. Acta 479(2), 233-248. DOI: 10.1016/S0003-2670(02)01550-7.
  • Bojanowski, R. (1981). The distribution of trace elements in the bay of Gdańsk. The influence of the Vistula river. Stud. Mater. Oceanol. 34, 53-92 (in Polish).
  • Boszke, L. & Kowalski, A. Mercury fractionation in floodplain soils of the Warta river, Poland. Ocean. Hydrob. Stud. (in press)
  • Boszke, L., Głosińska, G. & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment, Polish J. Environ. Stud. 11(4), 285-298.
  • Boszke, L., Kowalski, A. & Siepak, J. (2004a). Grain size partitioning of mercury in sediments of the middle Odra river (Germany/Poland). Water Air Soil Pollut. 159(1), 125-138. DOI:10.1023/B:WATE.0000049171.22781.bd.
  • Boszke, L., Kowalski, A. & Siepak, J. (2007). Fractionation of mercury in sediments of the Warta river (Poland). In L. Pawłowski, M. Dudzińska & A. Pawłowski (Eds.), Environmental Engineering Science (pp. 403-413) London: Taylor & Francis Group.
  • Boszke L., Kowalski A., Głosińska G., Szarek R. & Siepak J. (2003). Selected factors affecting the speciation of mercury in the bottom sediments: an overview. Polish J. Environ. Stud. 12(1), 5-13.
  • Boszke L., Sobczyński T., Głosińska G., Kowalski A. & Siepak J. (2004b). Distribution of mercury and other heavy metals in the bottom sediments of the middle Odra river (Germany/Poland). Polish J. Environ. Stud. 13(5), 495-502.
  • Boszke, L., Kowalski, A., Szczuciński, W., Rachlewicz, G., Lorenc, S. & Siepak, J. (2006). Assessment of mercury mobility and bioavailability by fractionation method in sediments from coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environ. Geol. 51(4), 527-536. DOI: 10.1007/s00254-006-0349-3.
  • Buszewski, B. & Kowalkowski, T. (2003). Poland's environment - past, present and future state of the environment in the Vistula and Odra River Basins. Environ. Sci. Pollut. Res. 10(6), 343-349. DOI: 10.1065/espr2003.11.177.
  • Buszewski, B., Buszewska, T., Chmarzyński, A., Kowalkowski, T., Kowalska, J., Kosobucki, P., Zbytniewski, R., Namieśnik, J., Kot-Wasik, A., Żukowska, B., Pacyna, J. & Panasiuk, D. (2005). The present condition of the Vistula river catchment area and its impact on the Baltic Sea coastal zone. Reg. Environ. Change, 5(2-3), 97-110. DOI: 10.1007/s10113-004-0077-8.
  • Calmano, W. & Förstner U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. Sci. Total Environ. 28(1-3), 77-90. DOI: 10.1016/S0048-9697(83)80009-6.
  • Ching-I, L. & Hongxiao, T. (1985). Chemical studies of aquatic pollution by heavy metals in China. In K.J. Irgolic & A.E. Martel (Eds.), Environmental Inorganic Chemistry (pp. 359-371), Deerfield Beach, FL: VCH Publishers.
  • Eguchi, T. & Tomiyasu, T. (2002). The speciation of mercury in sediments from Kagoshima Bay and Minamata Bay, Southern Kyusyu, Japan, by fractional extraction/cold-vapor AAS. Bunseki Kagaku 51(9), 859-864 (in Japanese with Engl. summ.).
  • Falandysz, J., Kawano, M., Danisiewicz, D., Stepnowski, P., Boszke, L., Chwir, A. & Gołębiowski, M. (1996). Total mercury in freshwater and nearshore sediment from various sites in Poland. Bromat Chem. Toksykol. 29(2), 183-186 (in Polish with Engl. summ.).
  • Glasby G.P. & Szefer P. (1998). Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: An overview. Sci. Total Environ. 212(1), 49-57. DOI: 10.1016/S0048-9697(97)00333-1.
  • Gustin M.S., Biester, H. & Kim C.S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos. Environ. 36(20), 3241-3254. DOI:10.1016/S1352-2310(02)00329-1.
  • Hall, G.E.M., Vaive, J.E., Beer, R. & Hoashi, M. (1996). Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. J. Geochem. Explor. 56(1), 59-78. DOI: 10.1016/0375-6742(95)00050-X.
  • Hesterberg, D., Chou, J.W., Hutchison, K.J. & Sayers, D.E. (2001). Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ. Sci. Technol. 35(13), 2741-2745. DOI: 10.1021/es001960o.
  • Hintelmann, H. & Wilken, R.-D. (1995). Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River: Influence of seasonally and spatially varying environmental factors. Sci. Total Environ. 166(1-3), 1-10. DOI: 10.1016/0048-9697(95)04506-V.
  • Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements. Warszawa: Państwowe Wydawnictwo Naukowe (in Polish).
  • Kannan, K. & Falandysz, J. (1998). Speciation and concentrations of mercury in certain coastal marine sediments. Water Air Soil Pollut. 103(1-4), 129-136. DOI: 10.1016/S0025-326X(99)80016-2.
  • Kim, C.S., Brown, G.E. & Rytuba, J.J. (2000). Characterization and speciation of mercurybearing mine waste using X-ray absorption spectroscopy. Sci. Total Environ. 261(1-3), 157-168. DOI: 10.1016/S0048-9697(00)00640-9.
  • Konieczka, P., Namieśnik, J., Zygmunt, B., Bulska, E., Świtaj-Zawadka, A., Naganowska, A., Kremer, E. & Rompa, M. (2004). Quality assessment and quality control of analytical results - QA/QC. Gdańsk: Centre of Excellence in Environment Analysis and Monitoring (in Polish).
  • Kot, F.S. & Matyushkina, L.A. (2002). Distribution of mercury in chemical fraction of contaminated urban soils of Middle Amur, Russia. J. Environ. Monit. 4(5), 803-908. DOI:10.1039/b203414j.
  • Kot, F.S., Matyushkina, L.A., Nikorych V.N. & Polivichenko V.G. (2002). Mercury in chemical and thermal fractions of soils of Eastern Ukrainian Polissya. Soil Sci. 3, 94-101.
  • Kowalski, A. (2006). Determination of the total mercury and its species in environmental samples. Unpublished doctoral dissertation, Adam Mickiewicz University, Poznań, Poland (in Polish).
  • Kurland, L.T., Faro, S.M. & Seidler, H. (1960). Minamata disease. The outbreak of neurological disorder in Minamata, Japan and its relationship to the ingestion of sea food contaminated by mercuric compounds. World Neurol. 1, 370-395.
  • Lechler, P.J., Miller, J.R., Hsu, L.C. & Desilets, M.O. (1997). Mercury mobility at the Carson River superfund site, west-central Nevada, USA-interpretation of mercury speciation data in mill tailing, soils, and sediments. J. Geochem. Explor. 58(2-3) 259-267. DOI:10.1016/S0375-6742(96)00071-4.
  • Majewski, A. (1990). Gulf of Gdańsk. Warszawa: Wydawnictwa Geologiczne (in Polish).
  • Matschullat, J. (1997). Trace element fluxes to the Baltic Sea: problems of inputs budgets. Ambio 26(6), 363-368.
  • Meili, M. (1997). Mercury in Lakes and Rivers. In A. Sigel & H. Sigel (Eds.) Mercury and its effects on environment and biology. Metal ions in biological systems (pp. 21-51), New York: Marcel Dekker Inc.
  • Papina T.S., Temerev S.V. & Eyrikih A.N. (2000). Heavy metals transport and distribution over the abiotic components of the river aquatic ecosystems (West Siberia, Russia). In J.O. Nriagu (Ed.), 11th Annual International Conference on Heavy Metals in the Environment. University of Michigan, School of Public Health, Ann Arbor, MI (CD-ROM).
  • Peng A., Wang Z. (1985). Mercury in river sediments. In K.J. Irgolic & A.E. Martel (Eds.), Environmental Inorganic Chemistry (pp. 393-400), Deerfield Beach, FL: VCH Publishers.
  • Pilz, B. & Yahya, A. (2000). Development of the heavy metal pollution in the sediments of the Lower Neckar River during the past 25 years. In J.O. Nriagu (Ed.), 11th Annual International Conference on Heavy Metals in the Environment, , University of Michigan, School of Public Health, Ann Arbor, MI (CD-ROM).
  • Prange, A., Furrer, R., Einax, J.W., Lochovsky, P., Kofalk, S. & Reincke, H. (2000). Die Elbe und ihre Nebenflusse: Belastung, Trends, Bewertung, Perspektiven. ATV-DVWK Deutsche Vereinigung fur Wasserwirtschaft, Abwasser und Abfalle.V., Hennef., 168 pp. (in German).
  • Renneberg, A.J. & Dudas, M.J. (2001). Transformations of elemental mercury to inorganic and organic forms in mercury and hydrocarbon co-contaminated soils. Chemosphere 45(6-7), 1103-1109. DOI: 10.1016/S0045-6535(01)00122-9.
  • Sakamoto, H., Tomiyasu, T. & Yonehara, N. (1995). The contents and chemical forms of mercury in sediments from Kagoshima Bay, in comparison with Minamata Bay and Yatsushiro Sea, southwestern Japan. Geochem. J. 29(2), 97-105.
  • Shi, J.B., Liang, L.N., Jiang, G.B. & Jin, X.L. (2005). The speciation and bioavailability of mercury in sediments of Haihe River, China. Environ. Int. 31(3), 357-365. DOI:10.1016/j.envint.2004.08.008.
  • Sladek, C. & Gustin, M.S. (2003). Evaluation of sequential and selective extraction methods for determination of mercury speciation and mobility in mine waste. Appl. Geochem. 18(4), 567-576. DOI: 10.1016/S0883-2927(02)00115-4.
  • Sladek, C., Gustin, M.S., Kim, C.S. & Biester, H. (2002). Application of three methods for determining mercury speciation in mine waste. Geochem: Explor, Environ. Anal. 2(4), 369-376. DOI: 10.1144/1467-787302-036.
  • Sokołowski, A., Wołowicz, M. & Hummel, H. (2001). Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula river plume (Souther Baltic Sea). Mar. Pollut. Bull. 42(10), 967-980. DOI: 10.1016/S0025-326X(01)00069-8.
  • Stein, E.D., Cohen, Y. & Winer, A.M. (1996). Environmental distribution and transformation of mercury compounds. Crit. Rev. Env. Sci. Tech. 26(1), 1-43.
  • Tarnowska M., Zeider R. (1980). Movement of water and surface sediments in the Vistula River plume. Stud. Mater. Oceanol. 30, 215-248 (in Polish).
  • Tessier, A., Campbell, P. & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844-51.
  • Ullrich, S.M., Tanton, T.W. & Abdrashitowa, S.A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Crit. Rev. Env. Sci. Tech. 31(3), 241-293. DOI:10.1080/20016491089226.
  • Wallschläger, D., Desai, M.V.M., Spengler, M. & Wilken, R.-D. (1998a). Mercury speciation in floodplain soils and sediments along a contaminated river transect. J. Environ. Qual. 27(5), 1034-1044.
  • Wallschläger, D., Desai, M.V.M., Spengler, M., Windmöler, C.C. & Wilken, R.D. (1998b). How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments. J. Environ. Qual. 27(5), 1044-1054.
  • Wasay, S.A., Barrington, S. & Tokunaga, S. (1998). Retention form of heavy metals in three polluted soils. Soil Sediment Contam. 7(1), 103-119. DOI: 10.1080/10588339891334186.
  • Weber, J.H. (1993). Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere 26(11), 2063-2077. DOI: 10.1016/0045-6535(93)90032-Z.
  • Wilken, R.D. & Hintelmann, H. (1991). Mercury and methylmercury in sediments and suspended particles from the river Elbe, North Germany. Water Air Soil Pollut. 56(1), 427-437. DOI:10.1007/BF00342289.
  • Wyrzykowska, B. & Falandysz, J. (2003). Mercury in the bottom sediments of the lower Vistula river ecosystem, Poland - a role of anthropogenic factor. J. Phys. IV France 107(II), 1381-1384.
  • Xia, K., Skyllberg, U.L., Bleam, W.F., Bloom, R.P., Nater, E.A. & Helmke, P.A. (1999). X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances. Environ. Sci. Technol. 33(2), 257-261. DOI: 10.1021/es980433q.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0008-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.