PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sedimentary deposition and reflux of phosphorus (P) in the Eastern Gotland Basin and their coupling with P concentrations in the water column

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to describe the role of sedimentary processes for the phosphorus (P) cycle in the open Baltic Proper, P deposition and reflux were quantified for the predominately anoxic sediments of the Eastern Gotland Basin. The study is based on investigations of 53 surface sediment samples and pore water samples from 8 sediment cores. The average P deposition rate was estimated at 0.20 g š 0.18 g -2 yr-1, the fluctuation being due to variable bulk sediment deposition rates. P refluxes were estimated by applying Fick's First Law of Diffusion. A fairly good positive correlation between sedimentary P deposition and P release was obtained. P release from sediments by diffusion exceeds net P deposition by a factor of 2. This suggests that 2/3 of the deposited gross P is recycled in the sediments and released back into the water column; only 1/3 remains in the sediment permanently. A budget calculation demonstrates that the released dissolved inorganic phosphorus (DIP) accounts for the observed increase in DIP concentrations in the deep water during periods of stagnation, which is noticeable even at the surface P concentrations. Under such conditions and with the present remediation conditions it is not possible to freely manage P concentrations in the water column on short time scales.
Słowa kluczowe
Czasopismo
Rocznik
Strony
663--679
Opis fizyczny
bibliogr. 52 poz., tab., wykr.
Twórcy
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, D–18119 Warnemünde, Germany
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, D–18119 Warnemünde, Germany
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, D–18119 Warnemünde, Germany
Bibliografia
  • [1] Ærtebjerg G., Andersen J. H., Hansen S. O. (eds.), 2003, Nutrients and eutrophication in Danish marine waters. A challenge for science and management, Danish EPA & Natl. Environ. Res. Inst., Roskilde, 126 pp.
  • [2] Andersin A. B., Cederwall H., Gosseleck F., Josefson A., Järvekulg A., Gunnars A., Nörrevang J., Rumohr H., 1990, Sediments and zoobenthos, Ambio, 7, 11–12.
  • [3] Balzer W., 1984, Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight), Limnol. Oceanogr., 29 (6), 1231–1246.
  • [4] Barnett P. R. O., Watson J., Connelly D., 1984, A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments, Oceanol. Acta, 7 (4), 399–408.
  • [5] Berner R. A., 1980, Early diagenesis: a theoretical approach, Princeton Univ. Press, Princeton, 241 pp.
  • [6] Bolałek J., 1992, Phosphate at the water-sediment interface in Puck Bay, Oceanologia, 33, 159–182.
  • [7] Boudreau B. P., 1997, Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments, Springer-Verl., Berlin, 414 pp.
  • [8] Carman R., Aigars J., Larsen B., 1996, Carbon and nutrient geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea, Mar. Geol., 134(1)–(2), 57–76.
  • [9] Cofino W. P., Wells D. E., 1994, Design and evaluation of the QUASIMEME inter-laboratory performance studies: a test case for robust statistics, Mar. Pollut. Bull., 29 (4)–(5), 149–158.
  • [10] Conley D. J., Humborg C., Rahm L., Savchuk O. P., Wulff F., 2002a, Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry, Environ. Sci. Technol., 36 (24), 5315–5320.
  • [11] Conley D. J., Markager S., Andersen J., Ellermann T., Svendsen L. M., 2002b, Coastal eutrophication and the Danish National Aquatic Monitoring and Assessment Program, Estuaries, 25 (4B), 848–861.
  • [12] Conley D. J., Stockenberg A., Carman R., Johnstone R. W., Rahm L., Wulff F., 1997, Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf Sci., 45 (5), 591–598.
  • [13] Einsele W., 1936, Über chemische und kolloidchemische Vorgänge in Eisen-Phopshat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten, Arch. Hydrobiol., 33, 361–387.
  • [14] Emeis K.-C., Struck U., Leipe T., Pollehne F., Kunzendorf H., Christiansen C., 2000, Changes in the burial rates and C:N:P ratios in the Baltic Sea sediments over the last 150 years, Mar. Geol., 167 (1)–(2), 43–59.
  • [15] Emelyanov E. M., 2001, Biogenic components and elements in sediments of the central Baltic and their redistribution, Mar. Geol., 172 (1), 23–41.
  • [16] Emelyanov E. M. (ed.), 2002, Geology of the Gdańsk Basin, Baltic Sea, Yantarny Skaz, Kaliningrad, 494 pp.
  • [17] Emelyanov E. M., Neumann G., Lemke W., Kramarska R., Uscinowicz S., 1994, Bottom sediments of the western Baltic 1:500 000, Head Dept. Navigation and Oceanogr., Russian Fed. Min. Defense, St. Petersburg.
  • [18] Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45 (4), 623–642.
  • [19] Gunnars A., Blomqvist S., 1997, Phopshate exchange across the sediment-water interface when shifting from anoxic to oxic conditions – an experimental comparision of freshwater and brackish-marine systems, Biogeochemistry, 37 (3), 203–226.
  • [20] Gunnars A., Blomqvist S., Johansson P., Andersson C., 2002, Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium, Geochim. Cosmochim. Acta, 66(5), 745–758.
  • [21] Hagen E., Feistel R., 2001, Spreading of Baltic deep water: a case study for the winter 1997–1998, Meereswiss. Ber., 45, 99–133.
  • [22] Hagen E., Feistel R., 2004, Observations of low-frequency current fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea, J. Geophys. Res., 109 (C03044), 1–15.
  • [23] Hille S., 2005, New aspects of sediment accumulation and reflux of nutrients in the Eastern Gotland Basin and its impact on nutrient cycling, Institute of Biology, Rostock Univ., 119 pp.
  • [24] Jansen D. L., Lundqvist D. P., Christiansen Ch., Lund-Hansen L. C., Balstrøm T., Leipe T., 2003, Deposition of organic matter and particulate nitrogen and phosphorus at the North Sea – Baltic Sea transition – a GIS study, Oceanologia, 45 (2), 283–303.
  • [25] Jensen H. S., Kristensen P., Jeppesen E., Skytthe A., 1992, Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes, Hydrobiologia, 235/236, 731–743.
  • [26] Jensen H. S., Mortensen P. B., Andersen F. Ø., Rasmussen E., Jensen A., 1995, Phosphorus cycling in a coastal marine sediment, Århus Bay, Denmark, Limnol. Oceanogr., 40 (5), 908–917.
  • [27] Koop K., Boynton W. R., Wulff F., Carman R., 1990, Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea, Mar. Ecol. Prog. Ser., 63, 65–77.
  • [28] Koroleff F., 1983, Determination of phosphorus, [in:] Methods of seawater analysis, K. Grasshoff, M. Ehrhardt & K. Kremling (eds.), Verl. Chem., Weinheim, 125–131.
  • [29] Laine A. O., Sandler H., Andersin A.-B., Stigzelius J., 1997, Long-term changes of macrozoobenthos in the Eastern Gotland Basin and the Gulf of Finland (Baltic Sea ) in relation to the hydrographical regime, J. Sea Res., 38, 135–159.
  • [30] Larsen B., Brügmann L., 1992, Phosphorus accumulation in the sediments of the Baltic Sea, ICES Rep. No 180, 109–121.
  • [31]Lavery P. S., Oldham C. E., Ghisalberti M., 2001, The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions, Hydrol. Process., 15 (13), 2435–2451.
  • [32] Lehtoranta J., 2003, Dynamics of sediment phosphorus in the brackish Gulf of Finland, Monogr. Boreal Environ. Res., 24, 1–58.
  • [33] Matthäus W., Franck H., 1992, Characteristics of major Baltic inflows – a statistical analysis, Cont. Shelf Res., 12 (12), 1375–1400.
  • [34] Matthiesen H., 1998, Phosphate release from marine sediments: by diffusion, advection and resuspension, Ph.D. thesis, Faculty of Natural Sciences, Århus Univ., Århus, 153 pp.
  • [35] Mortimer C. H. J., 1941, The exchange of dissolved substances between mud and water in lakes: I and II, J. Ecol., 29, 280–329.
  • [36] Nausch G., Feistel R., Lass H. U., Nagel K., Siegel H., 2003a, Hydrographisch-chemische Zustandseinschätzung der Ostsee 2002, Meereswiss. Ber., 55, 1–71.
  • [37] Nausch G., Matthäus W., Feistel R., 2003b, Hydrographic and hydrochemical conditions in the Gotland Deep area between 1992 and 2003, Oceanologia, 45 (4), 557–569.
  • [38] Nausch M., Nausch G., Wasmund N., 2004, Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea, Mar. Ecol. Prog. Ser., 266, 15–25.
  • [39] Nehring D., 1987, Temporal variations of phosphate and inorganic nitrogen compounds in central Baltic deep waters, Limnol. Oceanogr., 32 (2), 494–499.
  • [40] Neumann T., Leipe T., Brand T., Shimmield G., 1996, Accumulation of heavy metals in the Oder estuary and its off-shore basins, Chem. Erde, 56, 207–222.
  • [41] Revsbech N. P., 1989, An oxygen microsensor with a guard cathode, Limnol. Oceanogr., 34 (2), 474–478.
  • [42] Revsbech N. P., Jørgensen B. B., 1986, Microelectrodes: their use in microbial ecology, Adv. Microb. Ecol., 9, 293–352.
  • [43] Rheinheimer G., 1998, Pollution in the Baltic Sea, Naturwissenschaften, 85 (7), 318–329.
  • [44] Rozan T. F., Taillefert M., Trouwborst R. E., Glazer B. T., Ma S. F., Herszage J., Valdes L. M., Price K. S., Luther G. W., 2002, Iron-sulfur-phosphorous cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms, Limnol. Oceanogr., 47 (5), 1346–1354.
  • [45] Schinke H., Matthäus W., 1998, On the causes of major Baltic inflows – an analysis of long time-series, Cont. Shelf Res., 18 (1), 67–97.
  • [46] Schneider B., Nausch G., Kubsch H., Peterson I., 2002, Accumulation of total CO 2 during stagnation in the Baltic Sea deep water and its relationship to nutrient and oxygen concentrations, Mar. Chem., 77, 277–291.
  • [47] Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, 2nd edn., Baltic Sea Sci. Congr., 25–29 November, Stockholm.
  • [48] Sundby B., Gobeil Ch., Silverberg C. G., Silverberg N., Mucci A., 1992, The phosphorus cycle in coastal marine sediments, Limnol. Oceanogr., 37 (6), 1129–1145.
  • [49] Thamdrup B., Fossing H., Jørgensen B. B., 1994, Manganese, iron, and sulfur cycling in a coastal marine sediment, Åarhus Bay, Denmark, Geochim. Cosmochim. Acta, 58, 5115–5129.
  • [50] Tyson R. V., Pearson T. H., 1991, Modern and ancient continental shelf anoxia: an overview, [in:] Modern and ancient continental shelf anoxia, R. V. Tyson & T. H. Pearson (eds.), Geol. Soc. Spec. Publ. No 58, London, 1–24.
  • [51] Unverzagt S., 2001, Räumliche und zeitliche Veränderungen der Gebiete mit Schwefelwasserstoff im Tiefenwasser der Ostsee, Ph.D. thesis, Institute for Geography, Greifswald Univ., Greifswald, 123 pp.
  • [52] Wulff F., Rahm L., Hallin A.-K., Sandberg J., 2001, A nutrient budget model of the Baltic Sea, [in:] A systems analysis of the Baltic Sea, F. Wulff, L. Rahm & P. Larsson (eds.), Springer, Berlin, 353–372.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.