PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 2. Modelling results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Model spectra of mass-specific absorption coefficients a*OM(?) were established for 26 naturally occurring organic substances or their possible mixtures, capable of forming particulate organic matter (POM) in the sea. An algorithm was constructed, and the set of spectra of a*OM(?) was used to determine the spectra of the imaginary part of the complex refractive index n'p(?) characteristic of different physical types and chemical classes of POM commonly occurring in sea water. The variability in the spectra and absolute values of n'p for the various model classes and types of POM was shown to range over many orders of magnitude. This implies that modelling the optical properties of sea water requires a multi-component approach that takes account of the numerous living and non-living fractions of POM, each of which has a different value of n'p.
Czasopismo
Rocznik
Strony
621--662
Opis fizyczny
bibliogr. 38 poz., app.,tab.,wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL–76–200 Słupsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, 92093–0238 California, USA
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL–76–200 Słupsk, Poland
autor
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL–76–200 Słupsk, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
Bibliografia
  • [1] Bandaranayake W. M., 1998, Mycosporines: are they nature’s sunscreens?, Nat. Prod. Rep., 15(2), 159–172.
  • [2] Born M., Wolf E., 1968, Principles of optics, Pergamon Press, Oxford, 719 pp., [1973, Russian edn., Nauka, Moskva].
  • [3] Campbell I. D., Dwek R. A., 1984, Biological spectroscopy, Benjamin/Cummings Publ. Comp., Menlo Park, California etc., 404 pp.
  • [4] Carder K. L., Steward R. G., Harvey G. R., Ortner P. B., 1989, Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnol. Oceanogr., 34 (1), 68–81.
  • [5] Carreto J. I., Carignan M. O., Daleo G., DeMarco S. G., 1990a, Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds?, J. Plankton Res., 12, 909–921.
  • [6] Carreto J. I., Lutz V. A., DeMarco S. G., Carignan M. O., 1990b, Influence and wavelength dependence of mycosporine-like aminoacid synthesis in the dinoflagellate Alexandrium excavatum, [in:] Toxic marine photoplankton, E. Graneli, L. Edler, B. Sundstrom & D. M. Anderson (eds.), Elsevier, New York, 275–298.
  • [7] Favre-Bonvin J., Arpin N., Brevard C., 1976, Structure de la mycosporine (P310), Can. J. Chem., 54, 1105–1113.
  • [8] Ficek D., Kaczmarek S., Stoń-Egiert J., Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533–555.
  • [9] Filipowicz B., Więckowski W., 1983, Biochemistry, Vol. 2, PWN, Warszawa, 624 pp., (in Polish).
  • [10] Garcia-Pichel F., 1994, A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens, Limnol. Oceanogr., 39 (7), 1704–1717.
  • [11] Grodziński D. M., 1978, Plant biophysics, Państ. Wyd. Rol. Leś., Warszawa, 405 pp., (in Polish).
  • [12] Hayase K., Tsubota K., 1985, Sedimentary humic acid and fulvic acid as fluorescent organic materials, Geochim. Cosmochim. Acta, 49, 159–163.
  • [13] Iturriaga R., Siegel D. A., 1989, Microphotometric characterization of phytoplankton and detrital absorption propertis in the Sargasso Sea, Limnol. Oceanogr., 34 (8), 1706–1726.
  • [14] Jeffrey S. W., Mantoura R. F. C., Bjørnland T., 1997, Data for the identification of 47 key phytoplankton pigments, [in:] Phytoplankton pigments in oceanography: guidelines to modern methods, S. W. Jeffrey, R. F. C. Mantoura & S. W. Wright (eds.), UNESCO, Paris, 449–559.
  • [15] Karentz D., McEuen F. S., Land M. C., Dunlap W. C., 1991, Survey of mycosporine-like aminoacid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure, Mar. Biol., 108(1), 157–166.
  • [16] Kęcki Z., 1993, Molecular spectroscopy, PWN, Warszawa, (in Polish).
  • [17] Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Diss. and monogr., Pomeranian Pedagogical Univ., Słupsk, 1, 131 pp., (in Polish).
  • [18] Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191–202.
  • [19] Meyers-Schulte K., Hedges J. I., 1986, Molecular evidence for a terrestrial component of organic matter dissolved in ocean water, Nature, 321, 61–63.
  • [20] Miller N., Carpentier R., 1991, Energy dissipation and photoprotection mechanisms during chlorophyll photobleaching in thylakoid membranes, Photochem. Photobio., 54, 465–472.
  • [21] Moisan T. A., Mitchell B. G., 2001, UV absorption by mycosporine-like amino acids in Phaeocystis antarctica (Karsten) induced by photosynthetically available radiation, Mar. Biol., 138 (1), 217–227.
  • [22] Morel A., Ahn Y. H., 1990, Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particular organic carbon in oceanic waters, J. Mar. Res., 48, 145–175.
  • [23] Nyquist G., 1979, Investigation of some optical properties of sea water with special reference to lignin sulfonates and humic substances, Ph. D. thesis, Dept. Analytical and Marine Chemistry, Göteborg Univ., Göteborg, 203 pp.
  • [24] Pempkowiak J., 1989, Origin, sources and properties of humic substances in the Baltic Sea, Ossolineum, Wrocław, 146 pp., (in Polish).
  • [25] Pope R. M., Fry E.S., 1997, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, Appl. Optics, 36 (33), 8710–8723.
  • [26] Romankevich E. A., 1977, The geochemistry of organic substances in the ocean, Nauka, Moskva, 256 pp., (in Russian).
  • [27] Shlyk A. A. (ed.), 1974, Chlorophyll, Nauka i Tekhnika, Minsk, 415 pp., (in Russian).
  • [28] Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters (200–800 nm), Appl. Optics, 20(2), 177–184.
  • [29] Sogandares F. M., Fry E. S., 1997, Absorption spectrum 340–640 nm of pure water. I. Photothermal measurements, Appl. Optics, 36 (33), 8699–8709.
  • [30] Stramski D., Bricaud A., Morel A., 2001, Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Appl. Optics, 40 (18), 2929–2945.
  • [31] Stuermer D. H., 1975, The characterization of humic substances in sea water, Ph.D. thesis, Mass. Inst. Technol.–Woods Hole Oceanogr. Inst., 163 pp.
  • [32] Van de Hulst H. C., 1981, Light scattering by small particles, Dover Publ., Inc., New York, 470 pp.
  • [33] Vernet M., Whitehead K., 1996, Release of ultraviolet-absorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra, Mar. Biol., 127 (1), 35–44.
  • [34] Whitehead K., Hedges J. I., 2003, Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acids, Rapid Commun. Mass Sp., 17 (18), 2133–2138.
  • [35] Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41(2), 187–210.
  • [36] Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177–190.
  • [37] Woźniak B., Woźniak S. B., Tyszka K., Dera J., 2005, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles, Oceanologia, 47 (2), 129–164.
  • [38] Zepp R., Schlotzhauer P. F., 1981, Comparison of photochemical behaviour of various humic substances in water: 3. Spectroscopic properties of humic substances, Chemosphere, 10, 479–486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.