PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this Part 2 of the paper (Part 1 was published by Massel et al. 2004) an exact close-form solution for the pore-water pressure component and velocity circulation pattern induced by surface waves is developed. This comprehensive theoretical model, based on Biot's theory, takes into account soil deformations, volume change and pore-water flow. The calculations indicate that for the stiffness ratio G/E'w ? 100, the vertical distribution of the pore pressure becomes very close to the Moshagen & T?rum (1975) approach, when the soil is rigid and the fluid is incompressible. The theoretical results of the paper have been compared with the experimental data collected during the laboratory experiment in the Large Wave Channel in Hannover (see Massel et al. 2004) and showed very good agreement. The apparent bulk modulus of pore water was not determined in the experiment but was estimated from the best fit of the experimental pore-water pressure with the theoretical one. In the paper only a horizontal bottom is considered and the case of an undulating bottom will be dealt with in another paper.
Czasopismo
Rocznik
Strony
291--323
Opis fizyczny
bibliogr. 22 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
Bibliografia
  • [1] Biot M. A., 1941, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164.
  • [2] Biot M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. Part 1: Low frequency range. Part 2: Higher frequency range, J. Acoust. Soc. Am., 28 (2), 168–191.
  • [3] De Rouck J., Troch P., 2002, Pore water pressure response due to tides and waves based on prototype measurements, PIANC Bull., 110, 9–31.
  • [4] Huettel M., Rusch A., 2000, Transport and degradation of phytoplankton in permeable sediment, Limnol. Oceanogr., 45 (3), 534–549.
  • [5] Kaczmarek L. M., 1999, Moveable sea bed boundary layer and mechanics of sediment transport, Wyd. Inst. Bud. Wod. PAN, Gdańsk, 209 pp.
  • [6] Li L., Barry D. A., 2000, Wave-induced beach groundwater flow, Adv. Water Res., 23, 325–337.
  • [7] Longuet-Higgins M. S., 1983, Wave set-up, percolation and undertow in the surf zone, Proc. R. Soc., Lond., A390, 283–291.
  • [8] Madsen O. S., 1978, Wave induced pore pressures and effective stresses in a porous bed, Geotechnique, 28 (4), 377–393.
  • [9] Massel S. R., 1976, Gravity waves propagated over a permeable bottom, J. Waterway Div.–ASCE, 102, 111–121.
  • [10] Massel S. R., 1985, Soil boundary layer – applications in ocean engineering, Arch. Hydrotech., 32 (2), 157–194, (in Polish).
  • [11] Massel S. R., 2001, Circulation of groundwater due to wave set-up on a permeable beach, Oceanologia, 43 (3), 279–290.
  • [12] Massel S. R., Manzenrieder M., 1983, Scattering of surface waves by a submerged cylindrical body with porous screen, Rep. No 562, Leichtweiss Inst. Wasserbau, Gdańsk–Braunschweig, 56 pp.
  • [13] Massel S. R., Przyborska A., Przyborski M., 2004, Attenuation of wave-induced groundwater pressure in shallow water. Part 1, Oceanologia, 46 (3), 383–404.
  • [14] Mei C. C., Foda M. A., 1980, Boundary layer theory of waves in a poro-elastic sea bed, Proc. Int. Symp. ‘Soils under Cyclic and Transient Loading’, 7–11 January, Swansea, 609–618.
  • [15] Mei C. C., Foda M. A., 1981, Wave-induced responses in a fluid-filled poro-elastic solid with a free surface – a boundary layer theory, Geophys. J. Roy. Astron. Soc., 66, 597–631.
  • [16] Moshagen H., Tørum A., 1975, Wave-induced pressures in permeable seabeds, J. Waterway Div.–ASCE, 101, 49–57.
  • [17] Putman J. A., 1949, Loss of wave energy due to percolation in a permeable sea bottom, Trans. Am. Geophys. Union, 30, 349–356.
  • [18] Tørum A., Wave induced pore pressure – air/gas content, J. Waterw. Port Coast. Ocean Eng., (submitted).
  • [19] Verruijt A., 1969, Elastic storage of aquifers, [in:] Flow through porous media, R. J. M. Deweist (ed.), Acad. Press, New York, 331–376.
  • [20] Węsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K., Szymelfening M., Dutkowski M., 2000, Sandy coastlines – are there conflicts between recreation and natural values?, Oceanol. Stud., 29 (2), 5–18.
  • [21] Yamamoto T., 1977, Wave-induced instability in sea beds, Proc. Spec. Conf. ‘Coastal Sediments’, 898–913.
  • [22] Yamamoto T., Koning H. L., Sellmeiher H., Hijum E. V., 1978, On the response of a poro-elastic bed to water waves, J. Fluid Mech., 87, 193–206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.