PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particulate organic carbon (POC) and nitrogen (PON) concentrations and fluxes were measured during an experiment in the Gdańsk Deep in late spring (30.05.-06.06.2001). The vertical POC and PON concentration profiles were characterised by the highest values in the euphotic layer, a gradual decrease with depth, and an increase below the halocline. The hydrophysical conditions had a decisive impact on POC and PON fluxes in the water column. Preferential removal of nitrogen from suspended mater was observed in the entire water column (maximum - in the vicinity of thermocline). There were also differences in the diurnal effectiveness of nitrogen removal as compared to carbon removal. The removal rate was highest at night.
Czasopismo
Rocznik
Strony
201--217
Opis fizyczny
bibliogr. 33 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland
  • Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland
autor
  • Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, PL–81–378 Gdynia, Poland
Bibliografia
  • [1] Billet D. S. M., Lampitt R. S., Rice A. L., Montoura R. F. C., 1983, Seasonal sedimentation of phytoplankton to the deep-sea benthos, Nature, 302, 520–522.
  • [2] Burska D., Falkowska L., Bolałek J., 1997, Short-term fluctuations in dissolved silicate concentrations in the Gdańsk Deep, Oceanol. Stud., 2–3, 71–89.
  • [3] Colombo J. C., Silverberg N., Gearing J. N., 1996, Biogeochemistry of organic matter in the Laurentian Trough. I. Composition and vertical fluxes of rapidly settling particles, Mar. Chem., 51 (4), 277–293.
  • [4] Czerwińska E., Krzywobłodzka W., 1994, Bacterial microorganisms, [in:] Environmental conditions in the Polish zone of the southern Baltic Sea in 1993, B. Cyberska, Z. Lauer & A. Trzosińska (eds.), Mater. Oddz. Mor. Inst. Meteorol. i Gosp. Wod., Gdynia, 159–167, (in Polish).
  • [5] Edler I., 1979, Recommendation on a method of marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Balt. Mar. Biol. Publ. No 5 (Univ. Lund).
  • [6] Emeis K. C., Struck U., Leipe T., Pollehne F., Kunzendorf H., Christiansen C., 2000, Changes in the C, N, P burial rates in Baltic Sea sediments over the last 150 years; relevance to P regeneration rates and the phosphorus cycle, Mar. Geol., 167 (1)–(2), 43–59.
  • [7] Falkowska L., 2001, 12-hour cycle of matter transformation in the sea Surface microlayer in the offshore waters of the Gdańsk Basin (Baltic Sea) during spring, Oceanologia, 43 (2), 201–222.
  • [8] Falkowska L., Burska D., Bolałek J., Roguszczak D., 1998, Short-term changes in the hydrochemical constituents in the water column of the Gdańsk Deep (Baltic Sea) in spring. Part 1. Nutrient and oxygen concentrations in relation to the density stratification, Oceanologia, 40 (2), 83–104.
  • [9] Falkowska L., Latała A., 1995, Short-term variations in the concentrations of suspended particles, chlorophyll a and nutrients in the surface seawater layers of the Gdańsk Deep, Oceanologia, 37 (2), 249–284.
  • [10] Fowler S. W., Knauer G. A., 1986, Role of large particles in the transport of elements and organic compounds through the oceanic water column, Prog. Oceanogr., 16, 147–194.
  • [11] Gowen R. J., Tett P., Jones K., 1992, Predicting marine eutrophication: the yield of chlorophyll from nitrogen in Scottish coastal waters, Mar. Ecol. Prog. Ser., 85, 153–161.
  • [12] Graf G., 1989, Benthic-pelagic coupling in a deep-sea benthic community, Nature, 341, 437–439.
  • [13] Heiskanen A. S., Haapala J., Gundersen K., 1998, Sedimentation and pelagic retention of particulate C, N and P in the coastal northern Baltic Sea, Estuar. Coast. Shelf Sci., 46 (5), 703–712.
  • [14] Heiskanen A. S., Keck A., 1996, Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia), Mar. Chem., 53 (2)–(3), 229–245.
  • [15] Honjo S., 1980, Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones, J. Mar. Res., 38, 53–97.
  • [16] Jeffrey S. W., 1980, Algal pigment systems, [in:] Primary productivity in the sea, P. G. Falkowski (ed.), Plenum Press, New York, 33–58.
  • [17] Kemp R. B., 1999, From macromolecules to man, [in:] Handbook of thermal analysis and calorimetry, P. K. Gallagher (ed.), Elsevier, Amsterdam, 293–306.
  • [18] Kramer J. M., Brockmann U. H., Warwick R. M., 1994, Tidal estuaries: manual of sampling and analytical procedures, A. A. Balkema, Rotterdam, 137–138.
  • [19] Lande R., Wood A. M., 1987, Suspension times of particles in the upper ocean, Deep-Sea Res., 34 (1), 61–72.
  • [20] Magulski R., Falkowska L., Dunajska D., Pryputniewicz D., Sikorowicz G., 2004, Short-term fluctuations of chlorophyll a fluorescence versus diurnal variations of olar radiation in the surface water of the Gdańsk Basin, Oceanol. Hydrobiol. Stud., 33 (3), 57–68.
  • [21] Maksymowska D., 1996, Carbon and nitrogen content and degradation ratio of suspended matter and surface sediment of the Gulf of Gdańsk in spring 1995, Oceanol. Stud., 25 (3), 79–95.
  • [22] Neale P. J., 2001, Modeling the effects of ultraviolet radiation on estuarine phytoplankton production: impact of variations in exposure and sensivity to inhibition, J. Photoch. Photobio. B, 62 (1)–(2), 1–8.
  • [23] Parsons T. R., Maita Y., Lalli C. M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon Press, New York, 173 pp.
  • [24] Pryputniewicz D., Falkowska L., Burska D., 2002, Adenosine triphosphate in the marine boundary layer in the southern Baltic Sea, Oceanologia, 44 (4), 461–473.
  • [25] Reigstad M., Heiskanen A. S., Wassmann P., 1999, Seasonal and spatial variation of suspended and sedimented nutrients (C, N, P) in the pelagic system of the Gulf of Riga, J. Mar. Syst., 23, 211–232.
  • [26] Renk H., 2000, Primary production in the southern Baltic, Stud. i Mater. Mor. Inst. Ryb., 35 (A), 41–45, (in Polish).
  • [27] Rheinheimer G., Gocke K., Hoppe H. G., 1989, Vertical distribution of microbiological and hydrographic-chemical parameters in different areas of the Baltic Sea, Mar. Ecol. Prog. Ser., 52 (1), 55–70.
  • [28] Schneider B., Nausch G., Kubsch H., Petersohn I., 2002, Accumulation of total CO 2 during stagnation in the Baltic Sea deep water and its relationship to nutrient and oxygen concentrations, Mar. Chem., 77 (4), 277–291.
  • [29] Shulenberger E., Ried J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep-Sea Res., 28 (A), 901–919.
  • [30] Struck U., Pollehne F., Bauerfeind E., Bodungen B., 2004, Sources of nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) – results from sediment trap studies, J. Mar. Syst., 45, 91–101.
  • [31] Vernet M., Lorenzen C. J., 1987, The relative abundance of phaeophorbide a and phaeophytin a in temperate marine waters, Limnol. Oceanogr., 32 (2), 352–358.
  • [32] Wassmann P., 1991, Dynamics of primary production and sedimentation in shallow fjordsandpollsofwesternNorway, Oceanogr. Mar. Biol. Ann. Rev., 29, 87–154.
  • [33] Witek Z., 1995, Biological production and its consumption in the marine ecosystem of the western Gdańsk Basin, Wyd. Mor. Inst. Ryb., Gdynia, 23–25, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.