PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition of large organic particles (macrodetritus) in a sandy beach system (Puck Bay, Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the amount of organic macrodetritus deposited on the sandy shores of the southern Baltic, and to determine the type of washout material and their chemical composition (carbon and nitrogen). Over 900 samples of macrodetritus (particles retained on a 0.5 mm sieve) were collected from seven sampling locations along a 120 km stretch of coastline in Poland at monthly intervals in 2002. Analysis of the C and N content of several categories of detritus supplied information about seasonal changes in and the ageing of algal debris, and indicated that the amount of carrion is constant; the latter is apparently always metabolised very rapidly. The annual deposition of macroalgal detritus on this coast was estimated at 15 000 tonnes fresh weight, that is around 75% of the primary production of filamentous macroalgae in Puck Bay. In comparison with the amounts of kelp deposited on sandy beaches in South Africa (Griffiths & Stenton-Dozey 1981), the massive seaweed washouts on Mediterranean beaches (Morand & Briand 1996), or the deposition of algal mats in the northern Baltic (Norkko & Bonsdorff 1996a), the quantities of macrodetritus on the shore in the study area are average, even allowing for the fact that the Baltic Sea is highly eutrophic (HELCOM 2005).
Czasopismo
Rocznik
Strony
181--199
Opis fizyczny
bibliogr. 52 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 , PL–81–712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 , PL–81–712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 , PL–81–712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 , PL–81–712 Sopot, Poland
Bibliografia
  • [1] Balance A., Ryan P. G., Turpie J. K., 2000, How much is a clean beach worth? The impact of litter on beach users in the Cape Peninsula, South Africa, S. Afr. J. Sci., 96, 210–213.
  • [2] Boudreau B. P. ,Huettel M., Forster S., Jahnke R. A., McLachlan A., Middelburg J. J., Nielson P., Sansone F., Taghon G., Van Raaphorst W., Webster I., Węsławski J. M., Wiberg P., Sundby B., 2001, Permeable marine sediments: overturning an old paradigm, EOS, Trans. Am. Geoph. Union, 82 (11), 133–136.
  • [3] Brown A. C., McLachlan A., 1990, Ecology of sandy shores, Elsevier, Amsterdam, 328 pp.
  • [4] Cebrian J., Duarte C. M., 1995, Plant growth-rate dependence of detrital carbon storage in ecosystems, Science, 268, 1606–1608.
  • [5] Cuena Barron L., Wołowicz M., 1981, Apreliminary outline of the Mytilus edulis population from Gdańsk Bay, Oceanografia ,8 ,127–140.
  • [6] Dawes C., Siar K., Marlett D., 1999, Mangrove structure, litter and macroalgal productivity in a northern-most forest of Florida, Mangr. Salt Marsh., 3 (4), 259–267.
  • [7] Debrot A. O., Tiel A. B., Bradshaw J. E., 1999, Beach debris in Curaҫao, Mar. Pollut. Bull., 38 (9), 795–801.
  • [8] Duarte C. M., Cebrian J., 1996, The fate of marine autotrophic production, Limnol. Oceanogr., 41, 1758–1766.
  • [9] Duggins D. O., Simenstad C. A., Estes J. A., 1989, Magnification of secondary production by kelp detritus in coastal marine ecosystems, Science, 245, 170–173.
  • [10] Eilola K., Stigebrandt A., 2001, Modelling filamentous algae mats in shallow bays, Rep. 2001:38, EU Life algae LIFE 96/ENV/S/380, 77 pp.
  • [11] Eyras M. C., Rostagno C. M., Defossé G. E., 1998, Biological evaluation of seaweed composting, Compost Sci. Util., 6 (4), 74–81.
  • [12] Griffiths C. L., Stenton-Dozey J., 1981, The fauna and rate of degradation of stranded kelp, Estuar. Coast. Shelf Sci., 12, 645–653.
  • [13] Heiskanen A. S., Tallberg P., 1999, Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjord-like bay to the open sea, Hydrobiologia, 393, 127–140.
  • [14] HELCOM, 2005, Nutrient pollution to the Baltic Sea in 2000, Baltic Sea Environ. Proc., Helsinki Commiss., Helsinki, 100, 24 pp.
  • [15] Jankowska K., 2001, Ecosystem of sandy beaches as a live environment of heterotrophic bacteria, Ph. D. thesis, Politech. Gd., Gdańsk, 188 pp. (in Polish).
  • [16] Jędrzejczak M. F., 2002a, Spatio-temporal decay ‘hot spots’ of stranded wrack in a Baltic sandy coastal system. Part I. Comparative study of the pattern: 1 type wrack vs 3 beach sites, Oceanologia, 44 (4), 491–512.
  • [17] Jędrzejczak M. F., 2002b, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates, Oceanologia, 44 (2), 273–286.
  • [18] Jóźwiak T., 1996, Littering of the Polish Baltic coastline, Ph. D. thesis, Inst. Oceanogr., Uniw. Gd., ,Gdynia, 167 pp. (in Polish).
  • [19] Kędra M., Urbański J., 2005, Linear referencing as a tool for analyses of organic material deposition along the sandy beach of Gdańsk–Sopot–Gdynia (Polish coast of the Baltic Sea) pp. 1–4, Proc. Ocean Biodiversity Informatics, Int. Conf. Mar. Biodiversity Data Manage., 29 November–01 December 2004, Hamburg (Germany), IOC workshop Rep., Spec. Publ.
  • [20] Kiirikki M., Blomster J., 1996, Wind-induced upwelling as a possible explanation for mass occurrences of epiphytic Ectocarpus siliculosus (Phaeophyta) in the northern Baltic Proper, Mar. Biol., 127, 353–358.
  • [21] Kotwicki L., 2004, Ekologia meiofauny europejskich plaż piaszczystych, Ph. D. thesis, Inst. Oceanol. PAN, Sopot, 180 pp.
  • [22] Kotwicki L., Danielewicz J., Turzyński M., Węsławski J. M., 2002, Preliminary studies on the organic matter deposition and particle filtration processes in a sandy beach in Sopot – southern Baltic Sea, Oceanol. Stud., 31 (3)–(4), 71–84.
  • [23] Kotwicki L., Węsławski J. M., Szałtynis A., Stasiak A., Kupiec A., 2005, Fine organic particles in a sandy beach system (Puck Bay, Baltic Sea), Oceanologia, 47 (2), 165–180.
  • [24] Kramer K. J. M., Brockmann U. H., Warwick R. M. (eds.), 1994, Tidal estuaries: manual of sampling and analytical procedures, A. A. Balkema, Rotterdam, 304 pp.
  • [25] Kristensen E., Hansen K., 1995, Decay of plant detritus in organic-poor marine sediment: production rates and stoichiometry of dissolved C and N compounds, J. Mar. Res. ,53 ,675–702.
  • [26] Kruk-Dowgiałło L., Ciszewski P., 1994, Puck Bay – possibility of revaluation, Inst. Ochr. Środ., Warszawa, 208 pp. (in Polish).
  • [27] Madzena A., Lasiak T., 1997, Spatial and temporal variations in beach litter on the Transkei coast of South Africa, Mar. Pollut. Bull., 34 (11), 900–907.
  • [28] Maksymowska D., Feuillet-Girard M., Piekarek-Jankowska H., Heral M., 1997, Temporal variation in the accumulation of organic carbon and nitrogen in the suspended matter and silty surface sediment of the western Gulf of Gdańsk (southern Baltic Sea) – comparison with the Atlantic Bay of Marennes-Oléron, Oceanol. Stud., 2/3, 91–116.
  • [29] Maksymowska D., Richard P., Piekarek-Jankowska H., Riera P., 2000, Chemical and isotopic composition of the organic matter sources in the Gulf of Gdańsk (southern Baltic Sea), Estuar. Coast. Shelf Sci., 1 (5), 585–598.
  • [30] Malm T., Råberg S., Fell S., Carlsson P., 2004, Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity, Estuar. Coast. Shelf Sci., 60 (2), 339–347.
  • [31] Mann K. H., 1988, Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems, Limnol. Oceanogr., 33, 910–930.
  • [32] Morand P., Briand X., 1996, Excessive growth of macroalgae: a symptom of environmental disturbance, Bot. Mar., 39, 491–516.
  • [33] Norkko A., Bonsdorff E., 1996a, Altered benthic prey-availability due to episodic oxygen deficiency caused by drifting algal mats, Mar. Ecol., 17 (1)–(3), 355–372.
  • [34] Norkko A., Bonsdorff E., 1996b, Rapid zoobenthic community responses to accumulations of drifting algae, Mar. Ecol. Prog. Ser., 131, 143–157.
  • [35] Ochieng C. A., Erftemeijer P. L. A., 1999, Accumulation of seagrass beach cast along the Kenyan coast: a quantitative assessment, Aquat. Bot., 65 (1)–(4), 221–238.
  • [36] Osowiecki A., 2000, Directions in long-term changes of the macrozoobenthos structure of Puck Bay, Crangon, 3, 134 pp.
  • [37] Paalme T., Kukk H., Kotta J., Orav H., 2002, In vitro and in situ decomposition of nuisance macroalgae Cladophora glomerata and Pilayella littoralis, Hydrobiologia, 475, 469–476.
  • [38] Pihl L., Svenson A., Moksnes P. O., Wennhage H., 1999, Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure, J. Sea Res., 41 (4), 281–294.
  • [39] Pliński M., Wiktor K., 1987, Contemporary changes in coastal biocenoses of the Gdańsk Bay (South Baltic). A Review, Pol. Arch. Hydrobiol., 34, 81–90.
  • [40] Podgórska B., Mudryk Z. J., 2003, Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach, Estuar. Coast. Shelf Sci., 56 (3)–(4), 539–546.
  • [41] Salovius S., Bonsdorff E., 2004, Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis), J. Exp. Mar. Biol. Ecol., 298 ,93–109.
  • [42] Sapota M. R., Skóra K. E., 1996, Fish abundance in shallow inshore waters of theGulfofGdańsk, Proc. Polish-Swedish Symp. on Baltic Coastal Fisheries–Resources and Management, 2–3 April 1996, Sea Fish. Inst., Gdynia, 215–224.
  • [43] Smith S. V., Hollibaugh J. T., 1993, Coastal metabolism and the oceanic organic carbon balance, Rev. Geophys., 31, 75–89.
  • [44] Urban-Malinga B., 2003, Przepływ energii przez ekosystem plaży bałtyckiej, Ph. D. thesis, Inst. Oceanol. PAN, Sopot, 178 pp.
  • [45] Urban-Malinga B., Opaliński K. W., 2001, Interstitial community oxygen consumption in a Baltic sandy beach: horizontal zonation, Oceanologia, 43 (4), 455–468.
  • [46] Urbański J., Szymelfenig M., 2003, GIS-based mapping of benthic habitats, Estuar. Coast. Shelf Sci., 6 (1), 99–109.
  • [47] Schwartz M. C., 2004, Coastal nutrient inputs from groundwater: case studies from the East Coast of the United States, [in:] Drainage basin inputs and eutrophication: an integrated approach, P. Wassman & K. Olli (eds.), 50–60, [http://lepo.it.da.ut.ee/ ̃olli/eutr/Eutrophication.pdf].
  • [48] Tzetlin A. B., Mokievsky V. O., Melnikov A. N., Saphonov M. V., Simdyanov T. G., Ivanov I. E., 1997, Fauna associated with detached kelp in different types of subtidal habitats of the White Sea, Hydrobiologia, 355, 91–100.
  • [49] Wasmund N., Andrushaitis A., Łysiak-Pastuszak E., Müller-Karulis B., Nausch G., Neumann T., Ojaveer H., Olenina I., Postel L., Witek Z., 2001, Trophic status of the south-eastern Baltic Sea: a comparison of coastal and open areas, Estuar. Coast. Shelf Sci., 53 (6), 849–864.
  • [50] Węsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K. W., Szymelfenig M., Dutkowski M., 2000, Sandy coastlines – are there conflicts between recreation and natural values?, Oceanol. Stud., 29, 5–18.
  • [51] Witek Z., 1995, Biological production and its consumption in the marine ecosystem of the western Gdańsk Basin, Wyd. Mor. Inst. Ryb., Gdynia, 145 pp., (in Polish).
  • [52] Zieliński A., 1981, Benthic macroalgae of Admiralty Bay (King George Island, South Shetland Islands) and circulation of algal matter between the water and the shore, Pol. Polar Res., 2, 71–94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.