PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary par

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Data on organic substances in the sea are applied to distinguish hypothetical chemical classes and physical types of suspended particulate organic matter (POM) in seawater. Spectra of the light absorption coefficients of particulate matter apm(?) and the imaginary refractive index n'p(?), are assessed for some of these classes and types of POM in seawater, that is, for live phytoplankton cells and phytoplankton-like particles. The spectral characteristics of these coefficients are established and the probable ranges of variability of their absolute magnitudes defined on the basis of the mass-specific coefficients of light absorption by the various organic substances forming the particles. Also presented are mathematical relationships linking the coefficients apm(?) and n'p(?) for the various chemical classes of POM with their physical parameters, such as the relative contents of organic matter, water, air or some other gas. This article is part of a bio-optical study undertaken by the authors, the objective of which is to implement remote sensing techniques in the investigation of Baltic ecosystems (Woźniak et al. 2004).
Czasopismo
Rocznik
Strony
129--164
Opis fizyczny
bibliogr. 59 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL–76–200 Słupsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
  • Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, 92093–0238 California, USA
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland
Bibliografia
  • [1] Aiken G. R., McKnight D. M., Wershaw R. L., MacCarthy P. (eds.), 1985, Humic substances in soil, sediment and water: geochemistry and isolation, Wiley-Intersci., New York, 532 pp.
  • [2] Babin M., Stramski D., 2004, Variations in the mass-specific absorption coefficient of particles suspended in water, Limnol. Oceanogr., 49 (3), 756–767.
  • [3] Babin M., Stramski D., Ferrari G. M., Claustre H., Bricaud A., Obolensky G., Hoepffner N., 2003, Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108 (C7), 3211, doi: 10.1029/2001JC000882.
  • [4] Bader H., 1970, The hyperbolic distribution of particle size, J. Geophys. Res.,75, 2822–2830.
  • [5] Bohren C. F., Huffman D. R., 1983, Absorption and scattering of light by small particles, Wiley, New York, 530 pp.
  • [6] Born M., Wolf E., 1968, Principles of optics, Pergamon Press, Oxford, 719 pp., [1973, Russian edn., Nauka, Moskva].
  • [7] Bowers D. G., Harker G. E. L., Stephan B., 1996, Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll, Int. J. Remote Sens., 17 (12), 2449–2460.
  • [8] Bricaud A., Morel A., Babin M., Allali K., Claustre H., 1998, Variations of light absorption by suspended particles with chlorophylla concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res., 103 (C13), 31033–31044.
  • [9] Carder K. L., Steward R. G., Harvey G. R., Ortner P. B., 1989, Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnol. Oceanogr., 34 (1), 68–81.
  • [10] Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • [11] Dera J., 2003, Marine physics, new edn., PWN, Warszawa, 541 pp., (in Polish), [1992, PWN–Elsevier, Warszawa–Amsterdam, 516 pp., (in English)].
  • [12] DuRand M. D., Green R. E., Sosik H. M., Olson R. J., 2002, Diel variations in optical properties of Micromonas pusilla (prasinophyceae), J. Phycol., 38 (6), 1132–1142.
  • [13] Ficek D., Kaczmarek S., Stoń-Egiert J., Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533–555.
  • [14] Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395–423.
  • [15] Grzybowski W., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693–704.
  • [16] Hansell D. A., Carlson C. A. (eds.), 2002, Biogeochemistry of marine dissolved organic matter, Acad. Press, Amsterdam, 774 pp.
  • [17] Hayase K., Tsubota K., 1985, Sedimentary humic acid and fulvic acid as fluorescent organic materials, Geochim. Cosmochim. Acta, 49, 159–163.
  • [18] Iturriaga R., Siegel D. A., 1989, Microphotometric characterization of phytoplankton and detrital absorption propertis in the Sargasso Sea, Limnol. Oceanogr., 34 (8), 1706–1726.
  • [19] Kent G. S., Yue G. K., Farrukh U. O., Deepak A., 1983, Modeling atmospheric aerosol backscatter at CO 2 laser wavelengths. 1: aerosol properties, modeling techniques, and associated problems, Appl. Opt., 22 (11), 1655–1665.
  • [20] Kirk J. T. O., 1994, Light and photosynthesis in aquatic ecosystems, 2nd edn., Cambridge Univ. Press, New York, 509 pp.
  • [21] Koblentz-Mishke O. J., Vedernikov V. I., 1977, Primary production, [in:] Ocean biology, M. E. Vinogradov (ed.), Nauka, Moskva, 2, 183–208, (in Russian).
  • [22] Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589–599.
  • [23] Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157–175.
  • [24] Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191–202.
  • [25] Meyers-Schulte K., Hedges J., 1986, Molecular evidence for a terrestrial component of organic matter dissolved in ocean water, Nature, 321, 61–63.
  • [26] Mie G., 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 25, 377–445.
  • [27] Moisan T., Mitchell B. G., 2001, UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation, Mar. Biol., 138, 217–227.
  • [28] Morel A., 1988, Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C), 10749–10768.
  • [29] Morel A., Ahn Y.-H., 1990, Optical efficiency factors of free living marine bacteria: influence of bacterioplankton upon the optical properties and particular organic carbon in oceanic waters, J. Mar. Res., 48, 145–175.
  • [30] Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709–722.
  • [31] Mullin M. M., Sloan P. R., Eppley R. W., 1966, Relationship between carbon content, cell volume, andarea in phytoplankton, Limnol. Oceanogr., 11, 307–311.
  • [32] Nyquist G., 1979, Investigation of some optical properties of sea water with special reference to lignin sulfonates and humic substances, Ph. D. thesis, Dept. Anal. Mar. Chem., Göteborg Univ., Göteborg, 203 pp.
  • [33] Otremba Z., Król T., 2001, Light attenuation parameters of polydisperse oil-in-water emulsion, Opt. Appl., 31 (3), 600–609.
  • [34] Otremba Z., Piskozub J., 2004, Phase functions of oil-in-water emulsions, Opt. Appl., 34 (1), 93–99.
  • [35] Pempkowiak J., 1989, Origin, sources and properties of humic substances in the Baltic Sea, Ossolineum, Wrocław, 146 pp., (in Polish).
  • [36] Pope R. M., Fry E. S., 1997, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, Appl. Opt., 36 (33), 8710–8723.
  • [37] Popov N. I., Fedorov K. N., Orlov W. M., 1979, Morskaja voda, Nauka, Moskva, 327 pp.
  • [38] Rashid M. A., 1985, Geochemistry of marine humic compounds, Springer-Verl., New York, 300 pp.
  • [39] Risović D., 1993, Two-component model of sea particle size distribution, Deep-Sea Res. Pt. I, 40 (7), 1459–1473.
  • [40] Romankievich E. A., 1977, Geokhimija organicheskogo vieschchestva v okeane, Izd. Nauka, 256 pp., (in Russian).
  • [41] Smith R. C., Baker K. S., 1978, Optical classification of natural waters, Limnol. Oceanogr., 23 (2), 260–267.
  • [42] Spitzy A., Ittekkot V., 1986, Gelbstoff: an uncharachterized fraction of dissolved organic carbon, [in:] The influence of yellow substances on remote sensing of sea-water constituents from space, Vol. II: Appendices, GKSS Res. Centre Geesthacht, ESA Contract No RFQ 3–5060/84/NL/MD, December 1986, 207 pp.
  • [43] Staniszewski A., Lejman A., Pempkowiak J., 2001, Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Bay, Oceanologia, 43 (4), 421–439.
  • [44] Stramski D., 1999, Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content, Deep-Sea Res. Pt. I, 46, 335–351.
  • [45] Stramski D., Bricaud A., Morel A., 2001, Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Appl. Opt., 40 (18), 2929–2945.
  • [46] Stramski D., Sciandra A., Claustre H., 2002, Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana, Limnol. Oceanogr., 47 (2), 392–403.
  • [47] Stramski D., Woźniak S. B., 2005, On the role of colloidal particles in light scattering in the ocean, Limnol. Oceanogr., 50 (5), (in press).
  • [48] Stramski D., Woźniak S. B., Flatau P. J., 2004, Optical properties of Asian mineral dust suspended in seawater, Limnol. Oceanogr., 49 (3), 749–755.
  • [49] Stuermer D. H., 1975, The characterization of humic substances in sea water, Ph.D. thesis, Mass. Inst. Technol.–Woods Hole Oceanogr. Inst., 163 pp.
  • [50] Van de Hulst H. C., 1981, Light scattering by small particles, Dover Publ., Inc., New York, 470 pp.
  • [51] Verity P. G., Robertson C. Y., Tronzo C. R., Andrews M. G., Nelson J. R., Sieracki M. E., 1992, Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton, Limnol. Oceanogr., 37 (7), 1434–1446.
  • [52] Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187–210.
  • [53]Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177–190.
  • [54] Woźniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171–245.
  • [55] Woźniak B., Dera J., Koblentz-Mishke O. I., 1992, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5–38.
  • [56] Woźniak B., Krężel A., Dera J., 2004, Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) – an ongoing project in Poland, Oceanologia, 46 (3), 445–455.
  • [57] Woźniak B., Pelevin V. N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25–55.
  • [58] Woźniak S. B., Stramski D., 2004, Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms, Appl. Opt., 43 (17), 3489–3503.
  • [59] Zepp R., Schlotzhauer P. F., 1981, Comparison of photochemical behaviour of various humic substances in water: 3. Spectroscopic properties of humic substances, Chemosphere, 10, 479–486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.