PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long period oscillations in the longshore current on a sandy, barred coast investigated with Singular Spectrum Analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of infragravity waves in nearshore regions can be sought in the records of both water levels and wave-driven longshore currents. For this reason, time series of such currents in close proximity to the shoreline were analysed using Singular Spectrum Analysis (SSA). Simultaneously, the results obtained with this method were confronted with the output of Discrete Wavelet Transform (DWT), which had previously been applied to this data. The records of longshore currents were collected on a daily basis during field experiments in the autumns of 2002 and 2003 with sampling rates of 3 Hz and 0.5 Hz. This produced a large data set that allowed for the use of an advanced signal processing technique, capable of extracting patterns characteristic of low-, medium- and high-frequency bands. It provided similar evidence to that produced by DWT for the existence of infragravity waves along a dissipative coast with multiple bars. The study also demonstrated the utility of SSA for studies on coastal hydrodynamics. It also showed up the better user-friendliness of DWT in terms of pattern extraction and interpretation. On the other hand, SSA demonstrated a higher precision of pattern extraction once the DWT output was known, which is a manifestation of the synergy of the two methods when applied jointly.
Czasopismo
Rocznik
Strony
5--25
Opis fizyczny
bibliogr. 22 poz., tab., wykr.
Twórcy
autor
  • Institute of Hydroengineering, Polish Academy of Sciences, Kościerska 7, PL–80–953 Gdańsk, Poland
  • Institute of Hydroengineering, Polish Academy of Sciences, Kościerska 7, PL–80–953 Gdańsk, Poland
autor
  • Institute of Hydroengineering, Polish Academy of Sciences, Kościerska 7, PL–80–953 Gdańsk, Poland
Bibliografia
  • [1] Aubrey D. G., Emery K. O., 1983, Eigenanalysis of recent United States sea levels, Cont. Shelf Res., 2(1), 21–33.
  • [2] De Vriend H. J., 1991, Mathematical modeling and large-scale coastal behavior. Part 1. Physical processes, J. Hydraul. Res., 29(6), 727–740.
  • [3] Ding X. L., Chao J., Zheng D. W., Chen Y. Q., 2001, Long-term sea-level changes in Hong Kong from tide-gauge records, J. Coast. Res., 17(3), 749–754.
  • [4] Huang M. C., 2004, Wave parameters and functions in wavelet analysis with filtering, Ocean Eng., 31(7), 813–831.
  • [5] Larson M., Kraus N. C., 1995, Prediction of cross-shore sediment transport at different spatial and temporal scales, Mar. Geol., 126(1)–(4), 111–127.
  • [6] Massel S., 2001, Wavelet analysis for processing of ocean surface wave records, Ocean Eng., 28(8), 957–987.
  • [7] Pruszak Z., Różyński G., Szmytkiewicz M., Ostrowski R., Infragravity waves and rhythmic shoreline forms at a non-tidal, sandy coast with multiple bars, Proc. 29th ICCE Conf., ASCE, Lisbon, (in press).
  • [8] Pruszak Z., Różyński G., Szmytkiewicz M., Skaja M., 1999, Quasi-seasonal morphological shore evolution response to variable wave climate, Proc. Coastal Sediments’99 Conf., ASCE, New York, 1081–1093.
  • [9] Pruszak Z., Różyński G., Zeidler R. B., 1997, Statistical properties of multiple bars, Coast. Eng., 31(1)–(4), 263–280.
  • [10] Reeve D. E., 2002, Comments on ‘Forced and self organised shoreline response for a beach in the southern Baltic Sea determined through singular spectrum analysis’, [Coast. Eng., 43(2001), 41–58], Coast. Eng., 44(3), 267–269.
  • [11] Reeve D. E., Li B., Thurston N., 2001, Eigenfunction analysis of decadal fluctuations in sandbank morphology at Great Yarmouth, J. Coast. Res., 17(2), 371–382.
  • [12] Różyński G., 2003, Data-driven modeling of multiple longshore bars and their interactions, Coast. Eng., 48(3), 151–170.
  • [13] Różyński G., 2005, Long-term shoreline response of a nontidal, barred coast, Coast. Eng., 52(1), 79–91.
  • [14] Różyński G., Jansen H., 2002, Modeling nearshore bed topography with principal oscillation patterns, J. Waterw. Port Coast. Ocean Eng., 128(5), 202–215.
  • [15] Różyński G., Larson M., Pruszak Z., 2001, Forced and self-organized shoreline response for a beach in the southern Baltic Sea determined through singular spectrum analysis, Coast. Eng., 43(1), 41–58.
  • [16] Różyński G., Reeve D., Multi-resolution analysis of nearshore hydrodynamics using discrete wavelet transforms, Coast. Eng., (submitted).
  • [17] Solow A., 1987, The application of eigenanlysis to tide-gauge records of relative sea level, Cont. Shelf Sci., 7(6), 629–641.
  • [18] Stive M., Aarninkhof S. J. C., Hamm L., Hanson H., Larson M., Wijnberg K., Nicholls R. J., Capobianco M., 2002, Variability of shore and shoreline evolution, Coast. Eng., 47(2), 211–235.
  • [19] Szmytkiewicz M., 2002, Prądy pochodzenia falowego w morskiej strefie brzegowej (Wave-driven nearshore currents), IBW PAN Publ., Gdańsk, 1–235.
  • [20] Vautard R., Yiou P., Ghil M., 1992, Singular spectrum analysis: a toolkit for short, noisy and chaotic signals, Physica D, 158, 95–126.
  • [21] Wijnberg K. M., Terwindt J. H. J., 1995, Extracting decadal morphological behaviour from high-resolution long-term bathymetric survey along the Holland coast using eigenfunction analysis, Mar. Geol., 126, 301–330.
  • [22] Winant C. D., Inman D. L., Nordstrom C. E., 1975, Description of seasonal beach changes using empirical eigenfunctions, J. Geophys. Res., 80(15), 1979–1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0007-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.