PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanizm elektrodowego osadzania i rozpuszczania magnezu w rozpuszczalnikach niewodnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Mechanism of electrode deposition and dissolution of magnesium in non-aqueous solvents
Języki publikacji
PL
Abstrakty
EN
Reversible deposition of magnesium on electrodes and its anodic dissolution in non-aqueous solvents are possible only from particular electrolytes, like ethereal solutions of Grignard reagents or recently elaborated complexes of alkylaluminum chlorides with dialkylmagnesium. The above processes are important in developing rechargeable magnesium batteries but can also help organic chemists for deeper understanding of the formation of Grignard reagents in classic reactions. Magnesium deposition from solutions of Grignard reagents has been known for more than 80 years but repeated efforts to explain the reason of reversibility and find other suitable electrolytes were unsuccessful for a long time. Recently, a sig-nificant progress was achieved due to the application of modern spectroscopic methods combined with electrochemical measurements. These results are presented. They include a finding of Liebenow [27, 28] that the magnesium dissolution strongly depends on the morphology of depositions and conclusions from reports of Aurbach and coworkers [12, 32-42] which explained in detail characteristics of the magnesium surface in a contact with different electrolytes, the role of adsorption of ions and radicals in electrode processes and the nature of electro-active species in various solutions. Finally, the proposed electrode mechanism of the magnesium deposition and dissolution from different electrolytes, shown in Scheme 2 and reactions (12)-(16), is presented.
Rocznik
Strony
687--705
Opis fizyczny
bibliogr. 42 poz., wykr.
Twórcy
  • Wydział Chemii, Uniwersytet Warszawski, ul. Pasteura 1, 02-093 Warszawa
Bibliografia
  • [1] N.W. Kondyrew, Chem. Ber., 1925, 58, 459.
  • [2] N.W. Kondyrew, D.P. Manojew, Chem. Ber., 1925, 58, 464.
  • [3] L.W. Gaddum, H.E. French, J. Am. Chem. Soc., 1927, 49, 1295.
  • [4] N.W. Kondyrew, Zhur. Fiz. Khim., 1928, 60, 545.
  • [5] B.J. Beals, Z.I. Bello, K.P. Cuddihy, E.M. Healy, S.E. Koon-Church, J.M. Owens, C.E. Teerlinck, W.J. Bowyer, J. Phys. Chem. A, 2002, 106, 498.
  • [6] H. Hazimeh, J.-M. Mattalia, C. Marchi-Delapierre, R. Barone, N.S. Nudelman, M. Chanon, J. Phys. Org. Chem., 2005, 18, 1145.
  • [7] E. Findl, M.A. Ahmadi, K. Lui, Patent USA dla Xerox Corp., 1970, US3520780.
  • [8] J. Eckert, K. Gneupel, Patent NRD dla Technische Hochschule .C. Schorlemmer., 1987, DD 243722.
  • [9] A. Mayer, Patent USA dla US Dept. of Energy, 1988, US4778575.
  • [10] A. Mayer, J. Electrochem. Soc., 1990, 137, 2806.
  • [11] P. Novák, R. Imhof, O. Haas, Electrochim. Acta, 1999, 45, 351.
  • [12] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature, 2000, 407, 724.
  • [13] R.J. Hoffman, R.C. Winterton, T.D. Gregory, Patent USA dla Dow Chemical Company, 1990, US4894302.
  • [14] D. Aurbach, Y. Gofer, A. Schechter, L. Zhonghua, C. Gizbar, Patent USA dla Bar Ilan University, 2001, US6316141.
  • [15] D. Aurbach, O. Chasid, Y. Gofer, C. Gizbar, Patent USA dla Bar Ilan University, 2004, US6713212.
  • [16] J.M. Nelson, W.V. Evans, J. Am. Chem. Soc., 1917, 39, 82.
  • [17] W. V. Evans, R. Pearson, J. Am. Chem. Soc., 1942, 64, 2865.
  • [18] W. V. Evans, F.H. Lee, J. Am. Chem. Soc., 1933, 55, 1474.
  • [19] W. Strohmeier, Z. Elektrochem., 1956, 60, 396.
  • [20] W. Strohmeier, F. Seifert, Z. Elektrochem., 1959, 63, 683.
  • [21] K.C. Cannon, G.R. Krow, [w:] Handbook of Grignard Reagents, G.S. Silverman i P.E. Rakita Wyd., M. Dekker, New York, 1996, Rozdz. 13, str. 271-290.
  • [22] W. V. Evans, E. Field, J. Am. Chem. Soc., 1936, 58, 720.
  • [23] R.E. Dessy, G.S. Handler, J. Am. Chem. Soc., 1958, 80, 5824.
  • [24] J.D. Genders, D. Pletcher, J. Electroanal. Chem., 1986, 199, 93.
  • [25] A. Brenner, J. Electrochem. Soc., 1971, 118, 99.
  • [26] T.D. Gregory, R.J. Hoffman, R.C. Winterton, J. Electrochem. Soc., 1990, 137, 775.
  • [27] C. Liebenow, J. Appl. Electrochem., 1997, 27, 221.
  • [28] C. Liebenow, Z. Yang, P. Lobitz, Electrochem. Comm., 2000, 2, 641.
  • [29] C. Liebenow, Electrochim. Acta, 1998, 43, 1253.
  • [30] C. Liebenow, Solid State Ionics, 2000, 136.137, 1211.
  • [31] O. Chusid, Y. Gofer, H. Gizbar, Y. Vestfrid, E. Levi, D. Aurbach, I. Riech, Adv. Mater., 2003, 15, 627.
  • [32] Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, J. Electroanal. Chem., 1999, 466, 203.
  • [33] D. Aurbach, M. Moshkovich, A. Schechter, R. Turgeman, Electrochem. Solid State Lett., 2000, 3, 31.
  • [34] D. Aurbach, Y. Cohen, M. Moshkovich, Electrochem. Solid State Lett., 2001, 4, A113.
  • [35] D. Aurbach, A. Schechter, M. Moshkovich, Y. Cohen, J. Electrochem. Soc., 2001, 148, A1004.
  • [36] D. Aurbach, R. Turgeman, O. Chusid, Y. Gofer, Electrochem. Comm., 2001, 3, 252.
  • [37] D. Aurbach, Y. Gofer, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, M. Moshkovich, R. Turgeman, J. Power Sources, 2001, 97-98, 269.
  • [38] D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman, E. Levi, J. Power Sources,2001, 97-98, 28.
  • [39] D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H.E. Gottlieb, Y. Gofer, I. Goldberg, J. Electrochem. Soc., 2002, 149, A115.
  • [40] Y. Gofer, R. Turgeman, H. Cohen, D. Aurbach, Langmuir, 2003, 19, 2344.
  • [41] H. Gizbar, Y. Vestfrid, O. Chusid, Y. Gofer, H.E. Gottlieb, V. Marks, D. Aurbach, Organometallics, 2004, 23, 3826.
  • [42] Yu. Viestfrid, M.D. Levi, Y. Gofer, D. Aurbach, J. Electroanal. Chem., 2005, 576, 183.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.