Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to investigate the local nonconicality of unit ball in Orlicz spaces, endowed with the Luxemburg norm. A closed convex set Q in a locally convex topological Hausdorff space X is called locally nonconical {LNC), if for every x, y 6 Q there exists an open neighbourhood U of x such that (U Q) + (y - x)/2 C Q- The following theorem is established: An Orlicz space Lv{pi) has an LNC unit ball if and only if either L[fi](u) is finite dimensional or the measure fi is atomic with a positive greatest lower bound and tp satisfies the condition Aj!(/i) and is strictly convex on the interval [0,b], or c[fi] = +oo and [fi] satisfies the condition and is strictly convex on K. A similar result is obtained for the space E[fi](u).
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
85--107
Opis fizyczny
bibliogr. 23 poz.
Twórcy
autor
autor
- Institute of Mathematics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, seredyn@im.wroc.pl
Bibliografia
- [1] C.A. Akemann, G.C. Shell and N. Weaver, Locally Nonconical Convexity J. Convex Anal. 8 (2001), 87-107.
- [2] P. Bondyopadhyay, H. Da and B.L. Lin, Rotund points, Nested Sequence of Balls and Smothness in Banach Spaces, Comm. Math. 44(2) (2004), 163-186.
- [3] J. Cel,Tietze-type theorem for locally nonconical convex sets, Bull. Soc. Roy. Sci Liège 69 (2000), 13-15.
- [4] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae CCCLVI, Warszawa 1996.
- [5] A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193-203.
- [6] N. Dunford and J. T. Schwartz, Linear Operators I, General Theory, Pure Appl. Math. vol. -bf 7, Interscience, New York 1958.
- [7] A.S. Granero, A full characterization of stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 116(1992), 675-681.
- [8] A.S. Granero, Stable unit balls in Orlicz spaces Proc. Amer. Math. Soc. 109 (1990), 97-104.
- [9] A.S. Granero and M. Wisła, Closedness of the set of extreme points in Orlicz spaces, Math. Nachr. 157 (1992), 319-394.
- [10] R. Grz¸aslewicz,Extreme continous function property, Acta Math. Hungar. 74 (1997), 93-99.
- [11] R. Grz¸aslewicz, Finite dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33(5-6) (1985), 277-283.
- [12] M.A. Krasnosel'skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Grooningen, 1961.
- [13] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.
- [14] J. Musielak,J.Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 Springer Verlag, 1983.
- [15] W. Orlicz, ¨ Uber eine gewisse Klasse von R¨aumen vom Types B, Bull.Intern. Acad. Pol., série A, Kraków, (1932), 207-220.
- [16] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200.
- [17] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc. New York, 1991.
- [18] H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag Berlin Heidelberg New York, 1974.
- [19] G.C. Shell, Locally nonconical convex sets Ph D thesis, Umi, Ann. Arbor, 1997.
- [20] G.C. Shell, On the geometry of locally nonconical convex sets, Geom. Dedicata 75 (1999), 187-198.
- [21] M. Wisła, Continuity of the identity embedding of Musielak-Orlicz sequence spaces, Proc. Of the 14th Winter School on Abstract Analysis, Srni, 1986, Supp. ai Rendiconti del Circolo Mat. di Palermo 14 (1987), 427-437.
- [22] M. Wisła,Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. Univ.(Basel) 56 (1991), 482-490.
- [23] M. Wisła, Stable points of unit ball in Orlicz spaces, Comment. Math. Univ. Carolin. 32 (1991), 501-515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0062