PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Locally nonconical unit balls in Orlicz spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate the local nonconicality of unit ball in Orlicz spaces, endowed with the Luxemburg norm. A closed convex set Q in a locally convex topological Hausdorff space X is called locally nonconical {LNC), if for every x, y 6 Q there exists an open neighbourhood U of x such that (U Q) + (y - x)/2 C Q- The following theorem is established: An Orlicz space Lv{pi) has an LNC unit ball if and only if either L[fi](u) is finite dimensional or the measure fi is atomic with a positive greatest lower bound and tp satisfies the condition Aj!(/i) and is strictly convex on the interval [0,b], or c[fi] = +oo and [fi] satisfies the condition and is strictly convex on K. A similar result is obtained for the space E[fi](u).
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, seredyn@im.wroc.pl
Bibliografia
  • [1] C.A. Akemann, G.C. Shell and N. Weaver, Locally Nonconical Convexity J. Convex Anal. 8 (2001), 87-107.
  • [2] P. Bondyopadhyay, H. Da and B.L. Lin, Rotund points, Nested Sequence of Balls and Smothness in Banach Spaces, Comm. Math. 44(2) (2004), 163-186.
  • [3] J. Cel,Tietze-type theorem for locally nonconical convex sets, Bull. Soc. Roy. Sci Liège 69 (2000), 13-15.
  • [4] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae CCCLVI, Warszawa 1996.
  • [5] A. Clausing and S. Papadopoulou, Stable convex sets and extremal operators, Math. Ann. 231 (1978), 193-203.
  • [6] N. Dunford and J. T. Schwartz, Linear Operators I, General Theory, Pure Appl. Math. vol. -bf 7, Interscience, New York 1958.
  • [7] A.S. Granero, A full characterization of stable unit balls in Orlicz spaces, Proc. Amer. Math. Soc. 116(1992), 675-681.
  • [8] A.S. Granero, Stable unit balls in Orlicz spaces Proc. Amer. Math. Soc. 109 (1990), 97-104.
  • [9] A.S. Granero and M. Wisła, Closedness of the set of extreme points in Orlicz spaces, Math. Nachr. 157 (1992), 319-394.
  • [10] R. Grz¸aslewicz,Extreme continous function property, Acta Math. Hungar. 74 (1997), 93-99.
  • [11] R. Grz¸aslewicz, Finite dimensional Orlicz spaces, Bull. Polish Acad. Sci. Math. 33(5-6) (1985), 277-283.
  • [12] M.A. Krasnosel'skii and Y.B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Grooningen, 1961.
  • [13] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.
  • [14] J. Musielak,J.Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 Springer Verlag, 1983.
  • [15] W. Orlicz, ¨ Uber eine gewisse Klasse von R¨aumen vom Types B, Bull.Intern. Acad. Pol., série A, Kraków, (1932), 207-220.
  • [16] S. Papadopoulou, On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200.
  • [17] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Marcel Dekker Inc. New York, 1991.
  • [18] H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag Berlin Heidelberg New York, 1974.
  • [19] G.C. Shell, Locally nonconical convex sets Ph D thesis, Umi, Ann. Arbor, 1997.
  • [20] G.C. Shell, On the geometry of locally nonconical convex sets, Geom. Dedicata 75 (1999), 187-198.
  • [21] M. Wisła, Continuity of the identity embedding of Musielak-Orlicz sequence spaces, Proc. Of the 14th Winter School on Abstract Analysis, Srni, 1986, Supp. ai Rendiconti del Circolo Mat. di Palermo 14 (1987), 427-437.
  • [22] M. Wisła,Extreme points and stable unit balls in Orlicz sequence spaces, Arch. Math. Univ.(Basel) 56 (1991), 482-490.
  • [23] M. Wisła, Stable points of unit ball in Orlicz spaces, Comment. Math. Univ. Carolin. 32 (1991), 501-515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.