Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we prove the existence and uniqueness of C(n)-almost periodic solutions to the nonautonomous ordinary differential equation x'(t) = A(t) x(t)+f(t), t c R, where A(t) generates an exponentially stable family of operators [...] -almost periodic function with values in a Banach space X. We also study a Volterra-like equation with a C(n)-almost periodic solution.
Wydawca
Rocznik
Tom
Strony
263--273
Opis fizyczny
bibliogr. 27 poz.
Twórcy
autor
autor
autor
autor
- Universite Paris 1 Pantheon-Sorbonne, Laboratoire Marin MERSENNE Centre P.M.F., 90 rue de Tolbiac, 75647 PARIS Cedex 13, FRANCE, baillon@univ-paris1.fr
Bibliografia
- [1] P. Acquistapace, Evolution operators and strong solution of abstract linear parabolic equations, Differential Integral Equations 1 (1988), 433-457.
- [2] P. Acquistapace and B. Terreni, A unified approach to abstract linear parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47-107.
- [3] M. Adamczak, C(n)-almost periodic functions, Comment. Math. Prace Mat. 37 (1997), 1-12.
- [4] M. Adamczak and S. Sto´ınski On the (NC(n))-almost periodic functions, Proceedings of the 6th. Conference on Functions Spaces (R. Grz¸a´slewicz, Cz. Ryll-Nardzewski, H. Hudzik, and J. Musielak, eds), World Scientific Publishing, New Jersey, 2003, 39-48.
- [5] D. Bugajewski and G. M. N'Gu´er´ekata, Almost periodicity in Fr´echet spaces, J. Math. Anal. Appl. 299 (2004), 534-549.
- [6] D. Bugajewski and G. M. N'Gu´er´ekata, On some classes of almost periodic functions in abstract spaces, Intern. J. Math. and Math. Sci. 61 (2004), 3237-3247.
- [7] C. Corduneanu, Almost Periodic Functions, 2nd edition, Chelsea-New York 1989.
- [8] T. Diagana, Existence of p-almost automorphic mild solution to some abstract differential equations, Intern. J. Evol. Equ. 1(1) (2005), 57-67.
- [9] T. Diagana and G. M. N'Gu´er´ekata, Pseudo almost periodic mild solution to hyperbolic evolution equations in intermediate Banach spaces, Appl. Anal. 85(6-7) (2006), 769-780.
- [10] T. Diagana, C. M. Mahop and G. M. N'Guérékata, Existence and uniqueness of pseudo almost periodic solution to some classes of semilinear differential equations and applications, Nonlinear Anal. 64(11) (2006), 2442-2453.
- [11] T. Diagana, C. M. Mahop and G. M. N'Guérékata, Pseudo almost periodic solutions to some semilinear differential equations, Math. Comput. Modelling 43(1-2) (2006), 89-96.
- [12] T. Diagana, G. M. N'Guérékata, and N. V. Minh, Almost automorphic solutions of evolution equations, Proc. Amer. Math. Soc. 132 (2004), 3289-3298.
- [13] J. A. Goldstein, Convexity, boundedness, and almost periodicity for differential equations in Hilbert space, Internat. J. Math. Math. Sci. 2(1) (1979), 1-13.
- [14] Y. Hino, N. V. Minh and J. S. Shin, Almost Periodic Solutions of Differential Equations in Banach Spaces, Taylor & Francis, London-New York 2002.
- [15] M. I. Kadets, The integration of almots periodic functions with values in Banach spaces, Funct. Anal. Pril. 3 (1969), 228-230.
- [16] J. Liang, L. Maniar, G. M. N'Guérékata and T. J. Xiao, Existence and uniqueness of Cnalmost periodic solutions to some ordinary differential equations, Nonlinear Analysis, (in press).
- [17] J. Liu, N. V. Minh, G. M. N'Guérékata and V. Q. Phong, Bounded solutions for parabolic equations in continuous function spaces, Funkcial. Ekvac. 49 (2006), 337-355.
- [18] L. Maniar and S. Roland, Almost periodicity of inhomogeneous parabolic equations, Lecture Notes in Pure and Appl. Math. 234, Dekker, New York 2003, 299-318.
- [19] G. M. N'Guérékata, Almost Automorphic Functions and Almost Periodic Functions in Abstract Spaces, Kluwer Academic / Plenum Publishers, New York-London-Moscow 2001.
- [20] G. M. N'Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York 2005.
- [21] A. A. Pankov, Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations. (Translated from Russian by by V. S. Zjackovski and A. A. Pankov). Mathematics and Applications (Russian Series), v. 55. Kluwer Academic Publishers 1985.
- [22] W. Rudin, Functional Analysis, Mc Graw-Hill Book Company, New York 1973.
- [23] A. Yagi, Parabolic equations in which the coefficients are generators of infinitely differentiable semigroups II, Funkcial. Ekvac. 33 (1990), 139-150.
- [24] A. Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces, Boll. Un. Mat. Ital. 5 (1991), 341-368.
- [25] S. Zaidman, Topics in Abstract Differential Equations, Pitman Research Notes in Mathematics Ser. II John Wiley and Sons, New York 1994-1995.
- [26] S. Zaidman, Almost Periodic Functions in Abstract Spaces, Pitman Publishing Boston-London-Melbourne, Vol. 126, 1986.
- [27] C. Y. Zhang, Pseudo almots periodic solutions of some differential equations, J. Math. Anal. Appl., 181(1) (1994), 62-76.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0032