Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let L be a positive real number. In the present paper we present the definition of the Aumann Pettis integral and the Pettis integral of order for multifunctions. The properties of these integrals and the relations between them are studied extensively. In particular, a Strassen type theorem in this case and continuation property are proved. Also, we give a version for Fatou’s lemma and dominated convergence theorem for the Aumann-Pettis integral of order and for multifunctions.
Wydawca
Rocznik
Tom
Strony
181--200
Opis fizyczny
bibliogr. 35 poz.
Twórcy
autor
autor
- Cairo University Department of Mathematics, Faculty of Science, Cairo,12211, Egypt, AGAMAL2000@yahoo.com
Bibliografia
- [1] A. Amrani, C. Castaing and M. Valadier, Convergences in Pettis Norm under Extreme Point Condition, Vietnam J. Math. 26 (1998), 323-335.
- [2] A. Amrani and C. Castaing, Weak Compactness in Pettis Integration, Bull. Polish. Acad. Sci. 44(2) (1996).
- [3] J. Aubin and H. Frankowska, Set Valued Analysis, Birkh¨auser, Boston, Basel, Berlin 1990.
- [4] R. J. Aumann, Integral of Set Valued Functions, J. Math. Anal. Appl. 12 (1965), 1-12.
- [5] E. J. Balader, On Weak Convergence in L1-spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368.
- [6] E. J. Balader and C. Hess, On the Unbounded Multivalued Version of Fatou's Lemma, Math. Oper. Res. 20(1)(1995), 63-75.
- [7] E. J. Balder and A. R. Sambucini, On Weak Compactness and Lower Closure Results for Pettis Integrable (milti) Functions, Bull. Pol. Ac. Sci., to appear.
- [8] B. Cascales and J. Rodrignez, Birkhoff integral for Multifunctions, J. Math. Anal. Appl. 297 (2004), 450-460.
- [9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunction, Lecture Notes in Math. 580, Springer 1977.
- [10] G. Debreu, Integration of Correspondences, Proc. of the Fifth Berkeley Symposium on Mathematical Statistic and Probability 2(1) (1967), 351-372.
- [11] N. Dunford and J. T. Schwartz, Linear Operator (Part I), Interscience Publisher, Inc., New York 1957.
- [12] K. El Amri and C. Hess, On the Pettis Integral of Closed Valued Multifunctions, Set-Valued Anal. 8 (2000), 329-360.
- [13] Ahmed M. A. El-Sayed, On the Fractional Differential Equations, App. Math. Comput. 49(2.3) (1992), 205-213.
- [14] Ahmed M. A. El-Sayed, Fractional Order Evolution Equation, J. Frac. Calc. 7 (1995), 89-100.
- [15] Ahmed M. A. El-Sayed and A. G. Ibrahim, Multivalued Fractional Differential Equations, Appl. Math. Comput. 80 (1994).
- [16] Ahmed M. A. El-Sayed, Fractional Order Diffusion-Wave Equation, Inter. J. of Theoretical Physics 35(2) (1996).
- [17] J. C. Ferrando, On Sums of Pettis Integral Random Elements, Quaestions Math. 25 (2002), 311-316.
- [18] J. C. Ferrando, On Perttis Integrability, Cechoslovak Mthematical Journal 53(128) (2003), 1009-1015.
- [19] A.-G. Ibrahim and Ahmed M. A. El Sayed, Definite Integral of Fractional Order for Set-Valued Functions, J. of Fractional Calculus 11 (1997), 81-87.
- [20] A.-G. Ibrahim, On the Density of Extermal Solutions for Fractional Integral Inclusions in Banach spaces, J. of Fractional Calculus 18 (2000), 57-70.
- [21] S. Khurana, Weak Sequential Convergence in L_1 E and Dunford-Pettis Property of L_1 E, Proc. Amer. Math. Soc. 78 (1980), 85-88.
- [22] J. Komlos,A Generalization of a Problem of Steinhaus, Acta Math. Acad. Sci. Hungar 18 (1967), 217-229.
- [23] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc. 1993.
- [24] K. Mosco, On the Continuity of the Yong-Funchel Transform, J. Math. Anal. Appl. 35 (1971), 518-535.
- [25] K. Musial, Topics in the Theory of Pettis Integration, In: School of Measure Theory and Real Analysis, Grado, Italy 1992.
- [26] B. J. Pettis, On Integration in Vector Spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
- [27] J. D. Pryce, Weak Compactness in Locally Convex Spaces, Proc. Amer. Math. Soc. 17 (1966), 148-155.
- [28] G. Salinetti and R. Wets, On the Relation Between Two Types of Convergence for Convex Functions, J. Math. Anal. Appl. 60 (1977), 211-226.
- [29] R. A. Sambucini, Un Teorema Di Radon-Nikodym in Spazi Localmente Convessi Rispette All'inegrazione Per Seminorm, Rend. Mat. Univ. Parma 5 (1995), 49-60.
- [30] R. A. Sambucini, A Survey on Multivalued Integration, Atti. Sem. Mat. Fis. Univ. Modena, L (2002), 53-63.
- [31] Y. S. Sun, Integration of Correspondences on Loeb Spaces, Trans. Amer. Math. Soc. 349 (1997), 129-153.
- [32] S. Westerlund, Causality Technical Report, University College of Kalmar, Sweeden, 940426 1994.
- [33] S. Westerlund, Causal Models of Dynamic Process, 7th. Int. Symp. On System Modeling, Control, Zakopone, Poland 1993.
- [34] S. Westerlund, Fractional Derivatives in Physics, 14th IMACS Intr. Congress, Atlanta GA USA, July 1994.
- [35] H. Ziat, Convergence Theorem for Pettis Integrable Multifunctions, Bull. Polish. Acad. Sci. 44(2) (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS5-0004-0026